
10 criteria for selecting a code coverage tool 

 

In order to develop safe and reliable software, testing is an indispensable part of quality 
assurance. Without sufficient and documented tests, it is impossible to determine whether 
software is secure and functionally correct. The measurement of code coverage (test 
coverage) is particularly important in this context. This is because it can be used to 
determine how comprehensively a piece of software has already been tested. Code 
coverage indicates the ratio of tested code to total code. In simplified terms, for example, 
code coverage is 75% if three out of four possible options are run during the test. 

Particularly in safety-critical software development, industry standards prescribe precise 
requirements for code coverage, so that products cannot be certified here without proof of 
sufficient test coverage. But also in other development projects, companies increasingly 
attach great importance to software quality and measure code coverage. 

Various code coverage analyzers are available on the market for measuring code coverage. 
They differ significantly in terms of handling and quality. For this reason, we show ten basic 
criteria for selecting a code coverage tool: 

1. Independence from compiler 

Of course, a code coverage tool must work with the compiler used in the project. However, 
it makes a lot of sense to rely on a tool that can be used independently of the compiler right 
from the start. Such tools can be used then in all projects and also in the current project in 
the case of a change of the compiler. A coverage tool that can be used compiler-
independently can be used in a much more diverse way and is therefore a worthwhile 
investment. 

2. Ease of use 

The best software is reluctantly (and thus rarely) used if it is unnecessarily complicated or 
not well thought out. Simple handling, on the other hand, can significantly increase the 
user’s acceptance of the use of a test coverage tool. Ideally, the tool runs in the background 
and does not generate any additional work for the user during testing. 

 

3. Comprehensibility of the coverage reports 

When evaluating the coverage reports, it should be clear at a glance which parts of the code 
have already been tested and where coverage is still lacking. With good coverage tools, the 
tester can easily identify at source code level which test cases are still outstanding. By 
executing these missing tests, the code coverage can then be increased in a targeted 
manner. At the same time, this avoids unnecessary work that would result from redundant 
tests. 



 

Figure: In addition to an overview of the code coverage of the individual code parts (upper), 

an effective code coverage tool such as Testwell CTC++ also displays detailed information 

(lower) that shows exactly to what extent the source code is covered by tests, even for the 

highest coverage levels. (Source: Verifysoft Technology) 

 

4. Support of higher coverage levels for safety-critical development 

For the testing of safety-critical software, the standards (e.g. ISO 26262 in the automotive 
sector, DO-178C in aviation and EN-50128 in rail transport) stipulate high coverage levels up 
to MC/DC coverage. It is therefore imperative to ensure that the coverage tool supports all 
required coverage levels. In order to be able to use a solution in the long term, not only 
current, but also future requirements should be taken into account. Important to know: 
many coverage tools offer only decision or branch coverage and are therefore insufficient 
for safety-critical software development. 

 

 

 



5. Flexible Integration 

Even within a company, development environments and tool chains are often very 
heterogeneous. A coverage tool should easily cope with all these different environments. 
Integration into the respective build process and into the execution of tests must be possible 
seamlessly and without great effort. Provided that the tool can also be used via the 
command line, advantages are offered in the creation of automated builds. 

6. Low Instrumentation Overhead 

Most coverage tools measure code coverage by instrumenting the source code. The source 
code is enriched by the coverage tool with “counters”, which count where and how often 
the relevant code parts were executed during testing. However, this increases the size of the 
original code. When testing on embedded targets that have limited memory, care should 
therefore be taken to keep this so-called instrumentation overhead as low as possible. The 
differences in memory requirements between the individual code coverage tools are 
sometimes considerable. The code coverage analyzer Testwell CTC++ from Verifysoft 
Technology, for example, is very resource-efficient in this respect. With Testwell CTC++ it is 
even possible to further reduce the required memory space again by using the bit coverage 
option (bit coverage then only measures whether a code part has been tested, but not how 
often it was tested). 

7. Support of different programming languages 

Companies often work with different programming languages or plan to introduce additional 
languages in the future. It therefore makes sense to choose a tool that supports all or as 
many of these languages as possible right from the start. 

8. Support for “creative” programming 

Some coverage tools get problems when analyzing language constructs that deviate from 
common standards or have a high nesting depth. However, a good tool for measuring test 
coverage should also be able to cope with a “creative” programming style. 

9. Suitability for safety-critical software development 

When developing safety-critical software, the relevant standards require that the entire tool 
chain has to be qualified. The aim here is to prove that both the coverage analyzer and the 
other tools used within the entire toolchain work reliably. Manufacturers of professional 
code coverage tools support software projects with qualification kits and advice on tool 
qualification. In this context, attention should also be paid to whether the selected coverage 
tool is already being used successfully in safety-critical projects. 

10. Evaluation licenses, technical support and customer references 

The suitability of a coverage tool for one’s own projects should be checked during a tool 
evaluation. During this period, you will already get an impression of the performance of the 
technical support. Is the support also available by telephone or only by e-mail? How 
competent are the support staff? What about the response times? How good and practical is 
the user manual? Does the manufacturer also offer training? Last but not least, it is also 
advisable to take a look at the manufacturer’s customer references. These can provide 
further information about the quality of the coverage analyzer and the vendor’s 
performance. 



Conclusion 

Code coverage is mandatory for safety-critical software development for good reason. But it 
is also a good method for anyone who wants to improve their software quality in general to 
measure and increase the coverage and the value of tests. When selecting a code coverage 
analyzer, care must be taken to ensure that the tool meets the requirements set. In addition, 
factors such as ease of use and professional support play an important role. Used correctly, a 
good test coverage tool helps to significantly improve quality, increase the motivation of 
developers and testers, and perform tests in a cost-saving manner. 

 

Code Coverage at a Glance 

 

      Function Coverage 
Function Coverage measures whether all functions of the program were called. The Function 
Coverage is the “weakest” of the usual test coverage levels. 

      Statement Coverage 
Statement coverage measures how high the percentage of tested statements is compared to 
all statements. 

      Decision Coverage / Branch Coverage 
At this coverage level, each decision must be tested at least once as true and once as false. 
For normal if statements, this corresponds to branch coverage, where each branch must 
have been executed. 

      Condition Coverage 
Condition coverage considers compund decisions in detail. For decisions that consist of 
multiple atomic conditions composed via Boolean operators, each of these conditions must 
be tested individually as “true” and as “false”. 

      Multicondition Coverage and Modified Condition/Decision Coverage (MC/DC) 
For multicondition coverage, all possible true-false combinations must be checked for 
composite decisions. In the case of multiple conditions within a decision, this requires a 
mostly impracticably high number of test cases. In practice and in standards, Modified 
Condition/Decision Coverage (MC/DC) is therefore relevant, where the number of test cases 
is reduced, and the informative value of the test coverage remains sufficiently high. 

 



Autor:  

 

 
 

© 2021 Verifysoft Technology GmbH 

Klaus Lambertz is Chief Executive Officer / 

Managing Director, Co-founder and shareholder 

at Verifysoft Technology GmbH. Prior to co-

founding Verifysoft Technology GmbH in 2003, 

Klaus Lambertz had sales and management 

positions with different software testing solution 

providers in France and Germany (Parasoft, 

Testlight). From 1993-1999 he was responsible for 

exports to the German and Central European 

Markets for two of France´s most important 

printing plants (Partenaires-Livres, Maury 

Imprimeur). After working as a bank clerk in 

Cologne from 1981-1986, he graduated in studies of 

Economics, Marketing and Foreign Trade in Cologne 

(Germany) and Paris (France). 

https://www.embedded.com/10-criteria-for-selecting-a-code-coverage-tool/verifysoft.com

