/*
       *  linux/mm/initmem.c
       *
       *  Copyright (C) 1999 Ingo Molnar
       *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
       *
       *  simple boot-time physical memory area allocator and
       *  free memory collector. It's used to deal with reserved
       *  system memory and memory holes as well.
       */
      
      #include <linux/mm.h>
      #include <linux/kernel_stat.h>
      #include <linux/swap.h>
      #include <linux/swapctl.h>
      #include <linux/interrupt.h>
      #include <linux/init.h>
      #include <linux/bootmem.h>
      #include <linux/mmzone.h>
      #include <asm/dma.h>
      
      /*
       * Access to this subsystem has to be serialized externally. (this is
       * true for the boot process anyway)
       */
      unsigned long max_low_pfn;
      unsigned long min_low_pfn;
      
      /* return the number of _pages_ that will be allocated for the boot bitmap */
  30  unsigned long __init bootmem_bootmap_pages (unsigned long pages)
      {
      	unsigned long mapsize;
      
      	mapsize = (pages+7)/8;
      	mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
      	mapsize >>= PAGE_SHIFT;
      
  38  	return mapsize;
      }
      
      /*
       * Called once to set up the allocator itself.
       */
  44  static unsigned long __init init_bootmem_core (pg_data_t *pgdat,
      	unsigned long mapstart, unsigned long start, unsigned long end)
      {
      	bootmem_data_t *bdata = pgdat->bdata;
      	unsigned long mapsize = ((end - start)+7)/8;
      
      	pgdat->node_next = pgdat_list;
      	pgdat_list = pgdat;
      
      	mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL);
      	bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);
      	bdata->node_boot_start = (start << PAGE_SHIFT);
      	bdata->node_low_pfn = end;
      
      	/*
      	 * Initially all pages are reserved - setup_arch() has to
      	 * register free RAM areas explicitly.
      	 */
      	memset(bdata->node_bootmem_map, 0xff, mapsize);
      
  64  	return mapsize;
      }
      
      /*
       * Marks a particular physical memory range as unallocatable. Usable RAM
       * might be used for boot-time allocations - or it might get added
       * to the free page pool later on.
       */
  72  static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
      {
      	unsigned long i;
      	/*
      	 * round up, partially reserved pages are considered
      	 * fully reserved.
      	 */
      	unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;
      	unsigned long eidx = (addr + size - bdata->node_boot_start + 
      							PAGE_SIZE-1)/PAGE_SIZE;
      	unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;
      
  84  	if (!size) BUG();
      
  86  	if (end > bdata->node_low_pfn)
  87  		BUG();
  88  	for (i = sidx; i < eidx; i++)
  89  		if (test_and_set_bit(i, bdata->node_bootmem_map))
      			printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
      }
      
  93  static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size)
      {
      	unsigned long i;
      	unsigned long start;
      	/*
      	 * round down end of usable mem, partially free pages are
      	 * considered reserved.
      	 */
      	unsigned long sidx;
      	unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE;
      	unsigned long end = (addr + size)/PAGE_SIZE;
      
 105  	if (!size) BUG();
 106  	if (end > bdata->node_low_pfn)
 107  		BUG();
      
      	/*
      	 * Round up the beginning of the address.
      	 */
      	start = (addr + PAGE_SIZE-1) / PAGE_SIZE;
      	sidx = start - (bdata->node_boot_start/PAGE_SIZE);
      
 115  	for (i = sidx; i < eidx; i++) {
 116  		if (!test_and_clear_bit(i, bdata->node_bootmem_map))
 117  			BUG();
      	}
      }
      
      /*
       * We 'merge' subsequent allocations to save space. We might 'lose'
       * some fraction of a page if allocations cannot be satisfied due to
       * size constraints on boxes where there is physical RAM space
       * fragmentation - in these cases * (mostly large memory boxes) this
       * is not a problem.
       *
       * On low memory boxes we get it right in 100% of the cases.
       */
      
      /*
       * alignment has to be a power of 2 value.
       */
 134  static void * __init __alloc_bootmem_core (bootmem_data_t *bdata, 
      	unsigned long size, unsigned long align, unsigned long goal)
      {
      	unsigned long i, start = 0;
      	void *ret;
      	unsigned long offset, remaining_size;
      	unsigned long areasize, preferred, incr;
      	unsigned long eidx = bdata->node_low_pfn - (bdata->node_boot_start >>
      							PAGE_SHIFT);
      
 144  	if (!size) BUG();
      
      	/*
      	 * We try to allocate bootmem pages above 'goal'
      	 * first, then we try to allocate lower pages.
      	 */
      	if (goal && (goal >= bdata->node_boot_start) && 
 151  			((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {
      		preferred = goal - bdata->node_boot_start;
 153  	} else
      		preferred = 0;
      
      	preferred = ((preferred + align - 1) & ~(align - 1)) >> PAGE_SHIFT;
      	areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;
      	incr = align >> PAGE_SHIFT ? : 1;
      
      restart_scan:
 161  	for (i = preferred; i < eidx; i += incr) {
      		unsigned long j;
 163  		if (test_bit(i, bdata->node_bootmem_map))
 164  			continue;
 165  		for (j = i + 1; j < i + areasize; ++j) {
 166  			if (j >= eidx)
 167  				goto fail_block;
 168  			if (test_bit (j, bdata->node_bootmem_map))
 169  				goto fail_block;
      		}
      		start = i;
 172  		goto found;
      	fail_block:;
      	}
 175  	if (preferred) {
      		preferred = 0;
 177  		goto restart_scan;
      	}
      found:
 180  	if (start >= eidx)
 181  		BUG();
      
      	/*
      	 * Is the next page of the previous allocation-end the start
      	 * of this allocation's buffer? If yes then we can 'merge'
      	 * the previous partial page with this allocation.
      	 */
      	if (align <= PAGE_SIZE
 189  	    && bdata->last_offset && bdata->last_pos+1 == start) {
      		offset = (bdata->last_offset+align-1) & ~(align-1);
 191  		if (offset > PAGE_SIZE)
 192  			BUG();
      		remaining_size = PAGE_SIZE-offset;
 194  		if (size < remaining_size) {
      			areasize = 0;
      			// last_pos unchanged
      			bdata->last_offset = offset+size;
      			ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
      						bdata->node_boot_start);
 200  		} else {
      			remaining_size = size - remaining_size;
      			areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;
      			ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +
      						bdata->node_boot_start);
      			bdata->last_pos = start+areasize-1;
      			bdata->last_offset = remaining_size;
      		}
      		bdata->last_offset &= ~PAGE_MASK;
 209  	} else {
      		bdata->last_pos = start + areasize - 1;
      		bdata->last_offset = size & ~PAGE_MASK;
      		ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start);
      	}
      	/*
      	 * Reserve the area now:
      	 */
 217  	for (i = start; i < start+areasize; i++)
 218  		if (test_and_set_bit(i, bdata->node_bootmem_map))
 219  			BUG();
      	memset(ret, 0, size);
 221  	return ret;
      }
      
 224  static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
      {
      	struct page *page = pgdat->node_mem_map;
      	bootmem_data_t *bdata = pgdat->bdata;
      	unsigned long i, count, total = 0;
      	unsigned long idx;
      
 231  	if (!bdata->node_bootmem_map) BUG();
      
      	count = 0;
      	idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT);
 235  	for (i = 0; i < idx; i++, page++) {
 236  		if (!test_bit(i, bdata->node_bootmem_map)) {
      			count++;
      			ClearPageReserved(page);
      			set_page_count(page, 1);
      			__free_page(page);
      		}
      	}
      	total += count;
      
      	/*
      	 * Now free the allocator bitmap itself, it's not
      	 * needed anymore:
      	 */
      	page = virt_to_page(bdata->node_bootmem_map);
      	count = 0;
 251  	for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
      		count++;
      		ClearPageReserved(page);
      		set_page_count(page, 1);
      		__free_page(page);
      	}
      	total += count;
      	bdata->node_bootmem_map = NULL;
      
 260  	return total;
      }
      
 263  unsigned long __init init_bootmem_node (pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn)
      {
 265  	return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));
      }
      
 268  void __init reserve_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
      {
      	reserve_bootmem_core(pgdat->bdata, physaddr, size);
      }
      
 273  void __init free_bootmem_node (pg_data_t *pgdat, unsigned long physaddr, unsigned long size)
      {
 275  	return(free_bootmem_core(pgdat->bdata, physaddr, size));
      }
      
 278  unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)
      {
 280  	return(free_all_bootmem_core(pgdat));
      }
      
 283  unsigned long __init init_bootmem (unsigned long start, unsigned long pages)
      {
      	max_low_pfn = pages;
      	min_low_pfn = start;
 287  	return(init_bootmem_core(&contig_page_data, start, 0, pages));
      }
      
 290  void __init reserve_bootmem (unsigned long addr, unsigned long size)
      {
      	reserve_bootmem_core(contig_page_data.bdata, addr, size);
      }
      
 295  void __init free_bootmem (unsigned long addr, unsigned long size)
      {
 297  	return(free_bootmem_core(contig_page_data.bdata, addr, size));
      }
      
 300  unsigned long __init free_all_bootmem (void)
      {
 302  	return(free_all_bootmem_core(&contig_page_data));
      }
      
 305  void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal)
      {
      	pg_data_t *pgdat = pgdat_list;
      	void *ptr;
      
 310  	while (pgdat) {
      		if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,
 312  						align, goal)))
 313  			return(ptr);
      		pgdat = pgdat->node_next;
      	}
      	/*
      	 * Whoops, we cannot satisfy the allocation request.
      	 */
 319  	BUG();
 320  	return NULL;
      }
      
 323  void * __init __alloc_bootmem_node (pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal)
      {
      	void *ptr;
      
      	ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);
 328  	if (ptr)
 329  		return (ptr);
      
      	/*
      	 * Whoops, we cannot satisfy the allocation request.
      	 */
 334  	BUG();
 335  	return NULL;
      }