/*
       *	linux/arch/i386/kernel/irq.c
       *
       *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
       *
       * This file contains the code used by various IRQ handling routines:
       * asking for different IRQ's should be done through these routines
       * instead of just grabbing them. Thus setups with different IRQ numbers
       * shouldn't result in any weird surprises, and installing new handlers
       * should be easier.
       */
      
      /*
       * (mostly architecture independent, will move to kernel/irq.c in 2.5.)
       *
       * IRQs are in fact implemented a bit like signal handlers for the kernel.
       * Naturally it's not a 1:1 relation, but there are similarities.
       */
      
      #include <linux/config.h>
      #include <linux/ptrace.h>
      #include <linux/errno.h>
      #include <linux/signal.h>
      #include <linux/sched.h>
      #include <linux/ioport.h>
      #include <linux/interrupt.h>
      #include <linux/timex.h>
      #include <linux/malloc.h>
      #include <linux/random.h>
      #include <linux/smp_lock.h>
      #include <linux/init.h>
      #include <linux/kernel_stat.h>
      #include <linux/irq.h>
      #include <linux/proc_fs.h>
      
      #include <asm/io.h>
      #include <asm/smp.h>
      #include <asm/system.h>
      #include <asm/bitops.h>
      #include <asm/uaccess.h>
      #include <asm/pgalloc.h>
      #include <asm/delay.h>
      #include <asm/desc.h>
      #include <asm/irq.h>
      
      
      
      /*
       * Linux has a controller-independent x86 interrupt architecture.
       * every controller has a 'controller-template', that is used
       * by the main code to do the right thing. Each driver-visible
       * interrupt source is transparently wired to the apropriate
       * controller. Thus drivers need not be aware of the
       * interrupt-controller.
       *
       * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
       * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
       * (IO-APICs assumed to be messaging to Pentium local-APICs)
       *
       * the code is designed to be easily extended with new/different
       * interrupt controllers, without having to do assembly magic.
       */
      
      /*
       * Controller mappings for all interrupt sources:
       */
      irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned =
      	{ [0 ... NR_IRQS-1] = { 0, &no_irq_type, NULL, 0, SPIN_LOCK_UNLOCKED}};
      
      static void register_irq_proc (unsigned int irq);
      
      /*
       * Special irq handlers.
       */
      
  76  void no_action(int cpl, void *dev_id, struct pt_regs *regs) { }
      
      /*
       * Generic no controller code
       */
      
  82  static void enable_none(unsigned int irq) { }
  83  static unsigned int startup_none(unsigned int irq) { return 0; }
  84  static void disable_none(unsigned int irq) { }
  85  static void ack_none(unsigned int irq)
      {
      /*
       * 'what should we do if we get a hw irq event on an illegal vector'.
       * each architecture has to answer this themselves, it doesnt deserve
       * a generic callback i think.
       */
      #if CONFIG_X86
      	printk("unexpected IRQ trap at vector %02x\n", irq);
      #ifdef CONFIG_X86_LOCAL_APIC
      	/*
      	 * Currently unexpected vectors happen only on SMP and APIC.
      	 * We _must_ ack these because every local APIC has only N
      	 * irq slots per priority level, and a 'hanging, unacked' IRQ
      	 * holds up an irq slot - in excessive cases (when multiple
      	 * unexpected vectors occur) that might lock up the APIC
      	 * completely.
      	 */
      	ack_APIC_irq();
      #endif
      #endif
      }
      
      /* startup is the same as "enable", shutdown is same as "disable" */
      #define shutdown_none	disable_none
      #define end_none	enable_none
      
      struct hw_interrupt_type no_irq_type = {
      	"none",
      	startup_none,
      	shutdown_none,
      	enable_none,
      	disable_none,
      	ack_none,
      	end_none
      };
      
      volatile unsigned long irq_err_count;
      
      /*
       * Generic, controller-independent functions:
       */
      
 128  int get_irq_list(char *buf)
      {
      	int i, j;
      	struct irqaction * action;
      	char *p = buf;
      
      	p += sprintf(p, "           ");
 135  	for (j=0; j<smp_num_cpus; j++)
      		p += sprintf(p, "CPU%d       ",j);
      	*p++ = '\n';
      
 139  	for (i = 0 ; i < NR_IRQS ; i++) {
      		action = irq_desc[i].action;
 141  		if (!action) 
 142  			continue;
      		p += sprintf(p, "%3d: ",i);
      #ifndef CONFIG_SMP
      		p += sprintf(p, "%10u ", kstat_irqs(i));
      #else
      		for (j = 0; j < smp_num_cpus; j++)
      			p += sprintf(p, "%10u ",
      				kstat.irqs[cpu_logical_map(j)][i]);
      #endif
      		p += sprintf(p, " %14s", irq_desc[i].handler->typename);
      		p += sprintf(p, "  %s", action->name);
      
 154  		for (action=action->next; action; action = action->next)
      			p += sprintf(p, ", %s", action->name);
      		*p++ = '\n';
      	}
      	p += sprintf(p, "NMI: ");
 159  	for (j = 0; j < smp_num_cpus; j++)
      		p += sprintf(p, "%10u ",
      			nmi_count(cpu_logical_map(j)));
      	p += sprintf(p, "\n");
      #if CONFIG_SMP
      	p += sprintf(p, "LOC: ");
      	for (j = 0; j < smp_num_cpus; j++)
      		p += sprintf(p, "%10u ",
      			apic_timer_irqs[cpu_logical_map(j)]);
      	p += sprintf(p, "\n");
      #endif
      	p += sprintf(p, "ERR: %10lu\n", irq_err_count);
 171  	return p - buf;
      }
      
      
      /*
       * Global interrupt locks for SMP. Allow interrupts to come in on any
       * CPU, yet make cli/sti act globally to protect critical regions..
       */
      
      #ifdef CONFIG_SMP
      unsigned char global_irq_holder = NO_PROC_ID;
      unsigned volatile long global_irq_lock; /* pendantic: long for set_bit --RR */
      
      extern void show_stack(unsigned long* esp);
      
      static void show(char * str)
      {
      	int i;
      	int cpu = smp_processor_id();
      
      	printk("\n%s, CPU %d:\n", str, cpu);
      	printk("irq:  %d [",irqs_running());
      	for(i=0;i < smp_num_cpus;i++)
      		printk(" %d",local_irq_count(i));
      	printk(" ]\nbh:   %d [",spin_is_locked(&global_bh_lock) ? 1 : 0);
      	for(i=0;i < smp_num_cpus;i++)
      		printk(" %d",local_bh_count(i));
      
      	printk(" ]\nStack dumps:");
      	for(i = 0; i < smp_num_cpus; i++) {
      		unsigned long esp;
      		if (i == cpu)
      			continue;
      		printk("\nCPU %d:",i);
      		esp = init_tss[i].esp0;
      		if (!esp) {
      			/* tss->esp0 is set to NULL in cpu_init(),
      			 * it's initialized when the cpu returns to user
      			 * space. -- manfreds
      			 */
      			printk(" <unknown> ");
      			continue;
      		}
      		esp &= ~(THREAD_SIZE-1);
      		esp += sizeof(struct task_struct);
      		show_stack((void*)esp);
       	}
      	printk("\nCPU %d:",cpu);
      	show_stack(NULL);
      	printk("\n");
      }
      	
      #define MAXCOUNT 100000000
      
      /*
       * I had a lockup scenario where a tight loop doing
       * spin_unlock()/spin_lock() on CPU#1 was racing with
       * spin_lock() on CPU#0. CPU#0 should have noticed spin_unlock(), but
       * apparently the spin_unlock() information did not make it
       * through to CPU#0 ... nasty, is this by design, do we have to limit
       * 'memory update oscillation frequency' artificially like here?
       *
       * Such 'high frequency update' races can be avoided by careful design, but
       * some of our major constructs like spinlocks use similar techniques,
       * it would be nice to clarify this issue. Set this define to 0 if you
       * want to check whether your system freezes.  I suspect the delay done
       * by SYNC_OTHER_CORES() is in correlation with 'snooping latency', but
       * i thought that such things are guaranteed by design, since we use
       * the 'LOCK' prefix.
       */
      #define SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND 0
      
      #if SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND
      # define SYNC_OTHER_CORES(x) udelay(x+1)
      #else
      /*
       * We have to allow irqs to arrive between __sti and __cli
       */
      # define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop")
      #endif
      
      static inline void wait_on_irq(int cpu)
      {
      	int count = MAXCOUNT;
      
      	for (;;) {
      
      		/*
      		 * Wait until all interrupts are gone. Wait
      		 * for bottom half handlers unless we're
      		 * already executing in one..
      		 */
      		if (!irqs_running())
      			if (local_bh_count(cpu) || !spin_is_locked(&global_bh_lock))
      				break;
      
      		/* Duh, we have to loop. Release the lock to avoid deadlocks */
      		clear_bit(0,&global_irq_lock);
      
      		for (;;) {
      			if (!--count) {
      				show("wait_on_irq");
      				count = ~0;
      			}
      			__sti();
      			SYNC_OTHER_CORES(cpu);
      			__cli();
      			if (irqs_running())
      				continue;
      			if (global_irq_lock)
      				continue;
      			if (!local_bh_count(cpu) && spin_is_locked(&global_bh_lock))
      				continue;
      			if (!test_and_set_bit(0,&global_irq_lock))
      				break;
      		}
      	}
      }
      
      /*
       * This is called when we want to synchronize with
       * interrupts. We may for example tell a device to
       * stop sending interrupts: but to make sure there
       * are no interrupts that are executing on another
       * CPU we need to call this function.
       */
      void synchronize_irq(void)
      {
      	if (irqs_running()) {
      		/* Stupid approach */
      		cli();
      		sti();
      	}
      }
      
      static inline void get_irqlock(int cpu)
      {
      	if (test_and_set_bit(0,&global_irq_lock)) {
      		/* do we already hold the lock? */
      		if ((unsigned char) cpu == global_irq_holder)
      			return;
      		/* Uhhuh.. Somebody else got it. Wait.. */
      		do {
      			do {
      			} while (test_bit(0,&global_irq_lock));
      		} while (test_and_set_bit(0,&global_irq_lock));		
      	}
      	/* 
      	 * We also to make sure that nobody else is running
      	 * in an interrupt context. 
      	 */
      	wait_on_irq(cpu);
      
      	/*
      	 * Ok, finally..
      	 */
      	global_irq_holder = cpu;
      }
      
      #define EFLAGS_IF_SHIFT 9
      
      /*
       * A global "cli()" while in an interrupt context
       * turns into just a local cli(). Interrupts
       * should use spinlocks for the (very unlikely)
       * case that they ever want to protect against
       * each other.
       *
       * If we already have local interrupts disabled,
       * this will not turn a local disable into a
       * global one (problems with spinlocks: this makes
       * save_flags+cli+sti usable inside a spinlock).
       */
      void __global_cli(void)
      {
      	unsigned int flags;
      
      	__save_flags(flags);
      	if (flags & (1 << EFLAGS_IF_SHIFT)) {
      		int cpu = smp_processor_id();
      		__cli();
      		if (!local_irq_count(cpu))
      			get_irqlock(cpu);
      	}
      }
      
      void __global_sti(void)
      {
      	int cpu = smp_processor_id();
      
      	if (!local_irq_count(cpu))
      		release_irqlock(cpu);
      	__sti();
      }
      
      /*
       * SMP flags value to restore to:
       * 0 - global cli
       * 1 - global sti
       * 2 - local cli
       * 3 - local sti
       */
      unsigned long __global_save_flags(void)
      {
      	int retval;
      	int local_enabled;
      	unsigned long flags;
      	int cpu = smp_processor_id();
      
      	__save_flags(flags);
      	local_enabled = (flags >> EFLAGS_IF_SHIFT) & 1;
      	/* default to local */
      	retval = 2 + local_enabled;
      
      	/* check for global flags if we're not in an interrupt */
      	if (!local_irq_count(cpu)) {
      		if (local_enabled)
      			retval = 1;
      		if (global_irq_holder == cpu)
      			retval = 0;
      	}
      	return retval;
      }
      
      void __global_restore_flags(unsigned long flags)
      {
      	switch (flags) {
      	case 0:
      		__global_cli();
      		break;
      	case 1:
      		__global_sti();
      		break;
      	case 2:
      		__cli();
      		break;
      	case 3:
      		__sti();
      		break;
      	default:
      		printk("global_restore_flags: %08lx (%08lx)\n",
      			flags, (&flags)[-1]);
      	}
      }
      
      #endif
      
      /*
       * This should really return information about whether
       * we should do bottom half handling etc. Right now we
       * end up _always_ checking the bottom half, which is a
       * waste of time and is not what some drivers would
       * prefer.
       */
 425  int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
      {
      	int status;
      	int cpu = smp_processor_id();
      
      	irq_enter(cpu, irq);
      
      	status = 1;	/* Force the "do bottom halves" bit */
      
 434  	if (!(action->flags & SA_INTERRUPT))
      		__sti();
      
 437  	do {
      		status |= action->flags;
      		action->handler(irq, action->dev_id, regs);
      		action = action->next;
 441  	} while (action);
 442  	if (status & SA_SAMPLE_RANDOM)
      		add_interrupt_randomness(irq);
      	__cli();
      
      	irq_exit(cpu, irq);
      
 448  	return status;
      }
      
      /*
       * Generic enable/disable code: this just calls
       * down into the PIC-specific version for the actual
       * hardware disable after having gotten the irq
       * controller lock. 
       */
       
      /**
       *	disable_irq_nosync - disable an irq without waiting
       *	@irq: Interrupt to disable
       *
       *	Disable the selected interrupt line. Disables of an interrupt
       *	stack. Unlike disable_irq(), this function does not ensure existing
       *	instances of the IRQ handler have completed before returning.
       *
       *	This function may be called from IRQ context.
       */
       
 469  void inline disable_irq_nosync(unsigned int irq)
      {
      	irq_desc_t *desc = irq_desc + irq;
      	unsigned long flags;
      
 474  	spin_lock_irqsave(&desc->lock, flags);
 475  	if (!desc->depth++) {
      		desc->status |= IRQ_DISABLED;
      		desc->handler->disable(irq);
      	}
 479  	spin_unlock_irqrestore(&desc->lock, flags);
      }
      
      /**
       *	disable_irq - disable an irq and wait for completion
       *	@irq: Interrupt to disable
       *
       *	Disable the selected interrupt line. Disables of an interrupt
       *	stack. That is for two disables you need two enables. This
       *	function waits for any pending IRQ handlers for this interrupt
       *	to complete before returning. If you use this function while
       *	holding a resource the IRQ handler may need you will deadlock.
       *
       *	This function may be called - with care - from IRQ context.
       */
       
 495  void disable_irq(unsigned int irq)
      {
      	disable_irq_nosync(irq);
      
 499  	if (!local_irq_count(smp_processor_id())) {
 500  		do {
      			barrier();
 502  		} while (irq_desc[irq].status & IRQ_INPROGRESS);
      	}
      }
      
      /**
       *	enable_irq - enable interrupt handling on an irq
       *	@irq: Interrupt to enable
       *
       *	Re-enables the processing of interrupts on this IRQ line
       *	providing no disable_irq calls are now in effect.
       *
       *	This function may be called from IRQ context.
       */
       
 516  void enable_irq(unsigned int irq)
      {
      	irq_desc_t *desc = irq_desc + irq;
      	unsigned long flags;
      
 521  	spin_lock_irqsave(&desc->lock, flags);
 522  	switch (desc->depth) {
 523  	case 1: {
      		unsigned int status = desc->status & ~IRQ_DISABLED;
      		desc->status = status;
 526  		if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
      			desc->status = status | IRQ_REPLAY;
      			hw_resend_irq(desc->handler,irq);
      		}
      		desc->handler->enable(irq);
      		/* fall-through */
      	}
 533  	default:
      		desc->depth--;
 535  		break;
 536  	case 0:
      		printk("enable_irq(%u) unbalanced from %p\n", irq,
      		       __builtin_return_address(0));
      	}
 540  	spin_unlock_irqrestore(&desc->lock, flags);
      }
      
      /*
       * do_IRQ handles all normal device IRQ's (the special
       * SMP cross-CPU interrupts have their own specific
       * handlers).
       */
 548  asmlinkage unsigned int do_IRQ(struct pt_regs regs)
      {	
      	/* 
      	 * We ack quickly, we don't want the irq controller
      	 * thinking we're snobs just because some other CPU has
      	 * disabled global interrupts (we have already done the
      	 * INT_ACK cycles, it's too late to try to pretend to the
      	 * controller that we aren't taking the interrupt).
      	 *
      	 * 0 return value means that this irq is already being
      	 * handled by some other CPU. (or is disabled)
      	 */
      	int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code  */
      	int cpu = smp_processor_id();
      	irq_desc_t *desc = irq_desc + irq;
      	struct irqaction * action;
      	unsigned int status;
      
      	kstat.irqs[cpu][irq]++;
      	spin_lock(&desc->lock);
      	desc->handler->ack(irq);
      	/*
      	   REPLAY is when Linux resends an IRQ that was dropped earlier
      	   WAITING is used by probe to mark irqs that are being tested
      	   */
      	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
      	status |= IRQ_PENDING; /* we _want_ to handle it */
      
      	/*
      	 * If the IRQ is disabled for whatever reason, we cannot
      	 * use the action we have.
      	 */
      	action = NULL;
 581  	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
      		action = desc->action;
      		status &= ~IRQ_PENDING; /* we commit to handling */
      		status |= IRQ_INPROGRESS; /* we are handling it */
      	}
      	desc->status = status;
      
      	/*
      	 * If there is no IRQ handler or it was disabled, exit early.
      	   Since we set PENDING, if another processor is handling
      	   a different instance of this same irq, the other processor
      	   will take care of it.
      	 */
 594  	if (!action)
 595  		goto out;
      
      	/*
      	 * Edge triggered interrupts need to remember
      	 * pending events.
      	 * This applies to any hw interrupts that allow a second
      	 * instance of the same irq to arrive while we are in do_IRQ
      	 * or in the handler. But the code here only handles the _second_
      	 * instance of the irq, not the third or fourth. So it is mostly
      	 * useful for irq hardware that does not mask cleanly in an
      	 * SMP environment.
      	 */
 607  	for (;;) {
 608  		spin_unlock(&desc->lock);
      		handle_IRQ_event(irq, ®s, action);
      		spin_lock(&desc->lock);
      		
 612  		if (!(desc->status & IRQ_PENDING))
 613  			break;
      		desc->status &= ~IRQ_PENDING;
      	}
      	desc->status &= ~IRQ_INPROGRESS;
      out:
      	/*
      	 * The ->end() handler has to deal with interrupts which got
      	 * disabled while the handler was running.
      	 */
      	desc->handler->end(irq);
 623  	spin_unlock(&desc->lock);
      
 625  	if (softirq_active(cpu) & softirq_mask(cpu))
      		do_softirq();
 627  	return 1;
      }
      
      /**
       *	request_irq - allocate an interrupt line
       *	@irq: Interrupt line to allocate
       *	@handler: Function to be called when the IRQ occurs
       *	@irqflags: Interrupt type flags
       *	@devname: An ascii name for the claiming device
       *	@dev_id: A cookie passed back to the handler function
       *
       *	This call allocates interrupt resources and enables the
       *	interrupt line and IRQ handling. From the point this
       *	call is made your handler function may be invoked. Since
       *	your handler function must clear any interrupt the board 
       *	raises, you must take care both to initialise your hardware
       *	and to set up the interrupt handler in the right order.
       *
       *	Dev_id must be globally unique. Normally the address of the
       *	device data structure is used as the cookie. Since the handler
       *	receives this value it makes sense to use it.
       *
       *	If your interrupt is shared you must pass a non NULL dev_id
       *	as this is required when freeing the interrupt.
       *
       *	Flags:
       *
       *	SA_SHIRQ		Interrupt is shared
       *
       *	SA_INTERRUPT		Disable local interrupts while processing
       *
       *	SA_SAMPLE_RANDOM	The interrupt can be used for entropy
       *
       */
       
 662  int request_irq(unsigned int irq, 
      		void (*handler)(int, void *, struct pt_regs *),
      		unsigned long irqflags, 
      		const char * devname,
      		void *dev_id)
      {
      	int retval;
      	struct irqaction * action;
      
      #if 1
      	/*
      	 * Sanity-check: shared interrupts should REALLY pass in
      	 * a real dev-ID, otherwise we'll have trouble later trying
      	 * to figure out which interrupt is which (messes up the
      	 * interrupt freeing logic etc).
      	 */
 678  	if (irqflags & SA_SHIRQ) {
 679  		if (!dev_id)
      			printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
      	}
      #endif
      
 684  	if (irq >= NR_IRQS)
 685  		return -EINVAL;
 686  	if (!handler)
 687  		return -EINVAL;
      
      	action = (struct irqaction *)
      			kmalloc(sizeof(struct irqaction), GFP_KERNEL);
 691  	if (!action)
 692  		return -ENOMEM;
      
      	action->handler = handler;
      	action->flags = irqflags;
      	action->mask = 0;
      	action->name = devname;
      	action->next = NULL;
      	action->dev_id = dev_id;
      
      	retval = setup_irq(irq, action);
 702  	if (retval)
      		kfree(action);
 704  	return retval;
      }
      
      /**
       *	free_irq - free an interrupt
       *	@irq: Interrupt line to free
       *	@dev_id: Device identity to free
       *
       *	Remove an interrupt handler. The handler is removed and if the
       *	interrupt line is no longer in use by any driver it is disabled.
       *	On a shared IRQ the caller must ensure the interrupt is disabled
       *	on the card it drives before calling this function. The function
       *	does not return until any executing interrupts for this IRQ
       *	have completed.
       *
       *	This function may be called from interrupt context. 
       *
       *	Bugs: Attempting to free an irq in a handler for the same irq hangs
       *	      the machine.
       */
       
 725  void free_irq(unsigned int irq, void *dev_id)
      {
      	irq_desc_t *desc;
      	struct irqaction **p;
      	unsigned long flags;
      
 731  	if (irq >= NR_IRQS)
 732  		return;
      
      	desc = irq_desc + irq;
 735  	spin_lock_irqsave(&desc->lock,flags);
      	p = &desc->action;
 737  	for (;;) {
      		struct irqaction * action = *p;
 739  		if (action) {
      			struct irqaction **pp = p;
      			p = &action->next;
 742  			if (action->dev_id != dev_id)
 743  				continue;
      
      			/* Found it - now remove it from the list of entries */
      			*pp = action->next;
 747  			if (!desc->action) {
      				desc->status |= IRQ_DISABLED;
      				desc->handler->shutdown(irq);
      			}
 751  			spin_unlock_irqrestore(&desc->lock,flags);
      
      #ifdef CONFIG_SMP
      			/* Wait to make sure it's not being used on another CPU */
      			while (desc->status & IRQ_INPROGRESS)
      				barrier();
      #endif
      			kfree(action);
 759  			return;
      		}
      		printk("Trying to free free IRQ%d\n",irq);
 762  		spin_unlock_irqrestore(&desc->lock,flags);
 763  		return;
      	}
      }
      
      /*
       * IRQ autodetection code..
       *
       * This depends on the fact that any interrupt that
       * comes in on to an unassigned handler will get stuck
       * with "IRQ_WAITING" cleared and the interrupt
       * disabled.
       */
      
      static DECLARE_MUTEX(probe_sem);
      
      /**
       *	probe_irq_on	- begin an interrupt autodetect
       *
       *	Commence probing for an interrupt. The interrupts are scanned
       *	and a mask of potential interrupt lines is returned.
       *
       */
       
 786  unsigned long probe_irq_on(void)
      {
      	unsigned int i;
      	irq_desc_t *desc;
      	unsigned long val;
      	unsigned long delay;
      
      	down(&probe_sem);
      	/* 
      	 * something may have generated an irq long ago and we want to
      	 * flush such a longstanding irq before considering it as spurious. 
      	 */
 798  	for (i = NR_IRQS-1; i > 0; i--)  {
      		desc = irq_desc + i;
      
 801  		spin_lock_irq(&desc->lock);
 802  		if (!irq_desc[i].action) 
      			irq_desc[i].handler->startup(i);
 804  		spin_unlock_irq(&desc->lock);
      	}
      
      	/* Wait for longstanding interrupts to trigger. */
 808  	for (delay = jiffies + HZ/50; time_after(delay, jiffies); )
      		/* about 20ms delay */ synchronize_irq();
      
      	/*
      	 * enable any unassigned irqs
      	 * (we must startup again here because if a longstanding irq
      	 * happened in the previous stage, it may have masked itself)
      	 */
 816  	for (i = NR_IRQS-1; i > 0; i--) {
      		desc = irq_desc + i;
      
 819  		spin_lock_irq(&desc->lock);
 820  		if (!desc->action) {
      			desc->status |= IRQ_AUTODETECT | IRQ_WAITING;
 822  			if (desc->handler->startup(i))
      				desc->status |= IRQ_PENDING;
      		}
 825  		spin_unlock_irq(&desc->lock);
      	}
      
      	/*
      	 * Wait for spurious interrupts to trigger
      	 */
 831  	for (delay = jiffies + HZ/10; time_after(delay, jiffies); )
      		/* about 100ms delay */ synchronize_irq();
      
      	/*
      	 * Now filter out any obviously spurious interrupts
      	 */
      	val = 0;
 838  	for (i = 0; i < NR_IRQS; i++) {
      		irq_desc_t *desc = irq_desc + i;
      		unsigned int status;
      
 842  		spin_lock_irq(&desc->lock);
      		status = desc->status;
      
 845  		if (status & IRQ_AUTODETECT) {
      			/* It triggered already - consider it spurious. */
 847  			if (!(status & IRQ_WAITING)) {
      				desc->status = status & ~IRQ_AUTODETECT;
      				desc->handler->shutdown(i);
      			} else
 851  				if (i < 32)
      					val |= 1 << i;
      		}
 854  		spin_unlock_irq(&desc->lock);
      	}
      
 857  	return val;
      }
      
      /*
       * Return a mask of triggered interrupts (this
       * can handle only legacy ISA interrupts).
       */
       
      /**
       *	probe_irq_mask - scan a bitmap of interrupt lines
       *	@val:	mask of interrupts to consider
       *
       *	Scan the ISA bus interrupt lines and return a bitmap of
       *	active interrupts. The interrupt probe logic state is then
       *	returned to its previous value.
       *
       *	Note: we need to scan all the irq's even though we will
       *	only return ISA irq numbers - just so that we reset them
       *	all to a known state.
       */
 877  unsigned int probe_irq_mask(unsigned long val)
      {
      	int i;
      	unsigned int mask;
      
      	mask = 0;
 883  	for (i = 0; i < NR_IRQS; i++) {
      		irq_desc_t *desc = irq_desc + i;
      		unsigned int status;
      
 887  		spin_lock_irq(&desc->lock);
      		status = desc->status;
      
 890  		if (status & IRQ_AUTODETECT) {
 891  			if (i < 16 && !(status & IRQ_WAITING))
      				mask |= 1 << i;
      
      			desc->status = status & ~IRQ_AUTODETECT;
      			desc->handler->shutdown(i);
      		}
 897  		spin_unlock_irq(&desc->lock);
      	}
      	up(&probe_sem);
      
 901  	return mask & val;
      }
      
      /*
       * Return the one interrupt that triggered (this can
       * handle any interrupt source).
       */
      
      /**
       *	probe_irq_off	- end an interrupt autodetect
       *	@val: mask of potential interrupts (unused)
       *
       *	Scans the unused interrupt lines and returns the line which
       *	appears to have triggered the interrupt. If no interrupt was
       *	found then zero is returned. If more than one interrupt is
       *	found then minus the first candidate is returned to indicate
       *	their is doubt.
       *
       *	The interrupt probe logic state is returned to its previous
       *	value.
       *
       *	BUGS: When used in a module (which arguably shouldnt happen)
       *	nothing prevents two IRQ probe callers from overlapping. The
       *	results of this are non-optimal.
       */
       
 927  int probe_irq_off(unsigned long val)
      {
      	int i, irq_found, nr_irqs;
      
      	nr_irqs = 0;
      	irq_found = 0;
 933  	for (i = 0; i < NR_IRQS; i++) {
      		irq_desc_t *desc = irq_desc + i;
      		unsigned int status;
      
 937  		spin_lock_irq(&desc->lock);
      		status = desc->status;
      
 940  		if (status & IRQ_AUTODETECT) {
 941  			if (!(status & IRQ_WAITING)) {
 942  				if (!nr_irqs)
      					irq_found = i;
      				nr_irqs++;
      			}
      			desc->status = status & ~IRQ_AUTODETECT;
      			desc->handler->shutdown(i);
      		}
 949  		spin_unlock_irq(&desc->lock);
      	}
      	up(&probe_sem);
      
 953  	if (nr_irqs > 1)
      		irq_found = -irq_found;
 955  	return irq_found;
      }
      
      /* this was setup_x86_irq but it seems pretty generic */
 959  int setup_irq(unsigned int irq, struct irqaction * new)
      {
      	int shared = 0;
      	unsigned long flags;
      	struct irqaction *old, **p;
      	irq_desc_t *desc = irq_desc + irq;
      
      	/*
      	 * Some drivers like serial.c use request_irq() heavily,
      	 * so we have to be careful not to interfere with a
      	 * running system.
      	 */
 971  	if (new->flags & SA_SAMPLE_RANDOM) {
      		/*
      		 * This function might sleep, we want to call it first,
      		 * outside of the atomic block.
      		 * Yes, this might clear the entropy pool if the wrong
      		 * driver is attempted to be loaded, without actually
      		 * installing a new handler, but is this really a problem,
      		 * only the sysadmin is able to do this.
      		 */
      		rand_initialize_irq(irq);
      	}
      
      	/*
      	 * The following block of code has to be executed atomically
      	 */
 986  	spin_lock_irqsave(&desc->lock,flags);
      	p = &desc->action;
 988  	if ((old = *p) != NULL) {
      		/* Can't share interrupts unless both agree to */
 990  		if (!(old->flags & new->flags & SA_SHIRQ)) {
 991  			spin_unlock_irqrestore(&desc->lock,flags);
 992  			return -EBUSY;
      		}
      
      		/* add new interrupt at end of irq queue */
 996  		do {
      			p = &old->next;
      			old = *p;
 999  		} while (old);
      		shared = 1;
      	}
      
      	*p = new;
      
1005  	if (!shared) {
      		desc->depth = 0;
      		desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
      		desc->handler->startup(irq);
      	}
1010  	spin_unlock_irqrestore(&desc->lock,flags);
      
      	register_irq_proc(irq);
1013  	return 0;
      }
      
      static struct proc_dir_entry * root_irq_dir;
      static struct proc_dir_entry * irq_dir [NR_IRQS];
      static struct proc_dir_entry * smp_affinity_entry [NR_IRQS];
      
      static unsigned long irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL };
      
      #define HEX_DIGITS 8
      
1024  static int irq_affinity_read_proc (char *page, char **start, off_t off,
      			int count, int *eof, void *data)
      {
1027  	if (count < HEX_DIGITS+1)
1028  		return -EINVAL;
1029  	return sprintf (page, "%08lx\n", irq_affinity[(long)data]);
      }
      
1032  static unsigned int parse_hex_value (const char *buffer,
      		unsigned long count, unsigned long *ret)
      {
      	unsigned char hexnum [HEX_DIGITS];
      	unsigned long value;
      	int i;
      
1039  	if (!count)
1040  		return -EINVAL;
1041  	if (count > HEX_DIGITS)
      		count = HEX_DIGITS;
1043  	if (copy_from_user(hexnum, buffer, count))
1044  		return -EFAULT;
      
      	/*
      	 * Parse the first 8 characters as a hex string, any non-hex char
      	 * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same.
      	 */
      	value = 0;
      
1052  	for (i = 0; i < count; i++) {
      		unsigned int c = hexnum[i];
      
1055  		switch (c) {
1056  			case '0' ... '9': c -= '0'; break;
1057  			case 'a' ... 'f': c -= 'a'-10; break;
1058  			case 'A' ... 'F': c -= 'A'-10; break;
1059  		default:
1060  			goto out;
      		}
      		value = (value << 4) | c;
      	}
      out:
      	*ret = value;
1066  	return 0;
      }
      
1069  static int irq_affinity_write_proc (struct file *file, const char *buffer,
      					unsigned long count, void *data)
      {
      	int irq = (long) data, full_count = count, err;
      	unsigned long new_value;
      
1075  	if (!irq_desc[irq].handler->set_affinity)
1076  		return -EIO;
      
      	err = parse_hex_value(buffer, count, &new_value);
      
      #if CONFIG_SMP
      	/*
      	 * Do not allow disabling IRQs completely - it's a too easy
      	 * way to make the system unusable accidentally :-) At least
      	 * one online CPU still has to be targeted.
      	 */
      	if (!(new_value & cpu_online_map))
      		return -EINVAL;
      #endif
      
      	irq_affinity[irq] = new_value;
      	irq_desc[irq].handler->set_affinity(irq, new_value);
      
1093  	return full_count;
      }
      
1096  static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
      			int count, int *eof, void *data)
      {
      	unsigned long *mask = (unsigned long *) data;
1100  	if (count < HEX_DIGITS+1)
1101  		return -EINVAL;
1102  	return sprintf (page, "%08lx\n", *mask);
      }
      
1105  static int prof_cpu_mask_write_proc (struct file *file, const char *buffer,
      					unsigned long count, void *data)
      {
      	unsigned long *mask = (unsigned long *) data, full_count = count, err;
      	unsigned long new_value;
      
      	err = parse_hex_value(buffer, count, &new_value);
1112  	if (err)
1113  		return err;
      
      	*mask = new_value;
1116  	return full_count;
      }
      
      #define MAX_NAMELEN 10
      
1121  static void register_irq_proc (unsigned int irq)
      {
      	struct proc_dir_entry *entry;
      	char name [MAX_NAMELEN];
      
      	if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type) ||
1127  			irq_dir[irq])
1128  		return;
      
      	memset(name, 0, MAX_NAMELEN);
      	sprintf(name, "%d", irq);
      
      	/* create /proc/irq/1234 */
      	irq_dir[irq] = proc_mkdir(name, root_irq_dir);
      
      	/* create /proc/irq/1234/smp_affinity */
      	entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
      
      	entry->nlink = 1;
      	entry->data = (void *)(long)irq;
      	entry->read_proc = irq_affinity_read_proc;
      	entry->write_proc = irq_affinity_write_proc;
      
      	smp_affinity_entry[irq] = entry;
      }
      
      unsigned long prof_cpu_mask = -1;
      
1149  void init_irq_proc (void)
      {
      	struct proc_dir_entry *entry;
      	int i;
      
      	/* create /proc/irq */
      	root_irq_dir = proc_mkdir("irq", 0);
      
      	/* create /proc/irq/prof_cpu_mask */
      	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
      
      	entry->nlink = 1;
      	entry->data = (void *)&prof_cpu_mask;
      	entry->read_proc = prof_cpu_mask_read_proc;
      	entry->write_proc = prof_cpu_mask_write_proc;
      
      	/*
      	 * Create entries for all existing IRQs.
      	 */
1168  	for (i = 0; i < NR_IRQS; i++)
      		register_irq_proc(i);
      }