/*
       * random.c -- A strong random number generator
       *
       * Version 1.89, last modified 19-Sep-99
       * 
       * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
       * rights reserved.
       *
       * Redistribution and use in source and binary forms, with or without
       * modification, are permitted provided that the following conditions
       * are met:
       * 1. Redistributions of source code must retain the above copyright
       *    notice, and the entire permission notice in its entirety,
       *    including the disclaimer of warranties.
       * 2. Redistributions in binary form must reproduce the above copyright
       *    notice, this list of conditions and the following disclaimer in the
       *    documentation and/or other materials provided with the distribution.
       * 3. The name of the author may not be used to endorse or promote
       *    products derived from this software without specific prior
       *    written permission.
       * 
       * ALTERNATIVELY, this product may be distributed under the terms of
       * the GNU Public License, in which case the provisions of the GPL are
       * required INSTEAD OF the above restrictions.  (This clause is
       * necessary due to a potential bad interaction between the GPL and
       * the restrictions contained in a BSD-style copyright.)
       * 
       * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
       * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
       * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
       * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
       * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
       * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
       * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
       * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
       * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
       * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
       * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
       * DAMAGE.
       */
      
      /*
       * (now, with legal B.S. out of the way.....) 
       * 
       * This routine gathers environmental noise from device drivers, etc.,
       * and returns good random numbers, suitable for cryptographic use.
       * Besides the obvious cryptographic uses, these numbers are also good
       * for seeding TCP sequence numbers, and other places where it is
       * desirable to have numbers which are not only random, but hard to
       * predict by an attacker.
       *
       * Theory of operation
       * ===================
       * 
       * Computers are very predictable devices.  Hence it is extremely hard
       * to produce truly random numbers on a computer --- as opposed to
       * pseudo-random numbers, which can easily generated by using a
       * algorithm.  Unfortunately, it is very easy for attackers to guess
       * the sequence of pseudo-random number generators, and for some
       * applications this is not acceptable.  So instead, we must try to
       * gather "environmental noise" from the computer's environment, which
       * must be hard for outside attackers to observe, and use that to
       * generate random numbers.  In a Unix environment, this is best done
       * from inside the kernel.
       * 
       * Sources of randomness from the environment include inter-keyboard
       * timings, inter-interrupt timings from some interrupts, and other
       * events which are both (a) non-deterministic and (b) hard for an
       * outside observer to measure.  Randomness from these sources are
       * added to an "entropy pool", which is mixed using a CRC-like function.
       * This is not cryptographically strong, but it is adequate assuming
       * the randomness is not chosen maliciously, and it is fast enough that
       * the overhead of doing it on every interrupt is very reasonable.
       * As random bytes are mixed into the entropy pool, the routines keep
       * an *estimate* of how many bits of randomness have been stored into
       * the random number generator's internal state.
       * 
       * When random bytes are desired, they are obtained by taking the SHA
       * hash of the contents of the "entropy pool".  The SHA hash avoids
       * exposing the internal state of the entropy pool.  It is believed to
       * be computationally infeasible to derive any useful information
       * about the input of SHA from its output.  Even if it is possible to
       * analyze SHA in some clever way, as long as the amount of data
       * returned from the generator is less than the inherent entropy in
       * the pool, the output data is totally unpredictable.  For this
       * reason, the routine decreases its internal estimate of how many
       * bits of "true randomness" are contained in the entropy pool as it
       * outputs random numbers.
       * 
       * If this estimate goes to zero, the routine can still generate
       * random numbers; however, an attacker may (at least in theory) be
       * able to infer the future output of the generator from prior
       * outputs.  This requires successful cryptanalysis of SHA, which is
       * not believed to be feasible, but there is a remote possibility.
       * Nonetheless, these numbers should be useful for the vast majority
       * of purposes.
       * 
       * Exported interfaces ---- output
       * ===============================
       * 
       * There are three exported interfaces; the first is one designed to
       * be used from within the kernel:
       *
       * 	void get_random_bytes(void *buf, int nbytes);
       *
       * This interface will return the requested number of random bytes,
       * and place it in the requested buffer.
       * 
       * The two other interfaces are two character devices /dev/random and
       * /dev/urandom.  /dev/random is suitable for use when very high
       * quality randomness is desired (for example, for key generation or
       * one-time pads), as it will only return a maximum of the number of
       * bits of randomness (as estimated by the random number generator)
       * contained in the entropy pool.
       * 
       * The /dev/urandom device does not have this limit, and will return
       * as many bytes as are requested.  As more and more random bytes are
       * requested without giving time for the entropy pool to recharge,
       * this will result in random numbers that are merely cryptographically
       * strong.  For many applications, however, this is acceptable.
       *
       * Exported interfaces ---- input
       * ==============================
       * 
       * The current exported interfaces for gathering environmental noise
       * from the devices are:
       * 
       * 	void add_keyboard_randomness(unsigned char scancode);
       * 	void add_mouse_randomness(__u32 mouse_data);
       * 	void add_interrupt_randomness(int irq);
       * 	void add_blkdev_randomness(int irq);
       * 
       * add_keyboard_randomness() uses the inter-keypress timing, as well as the
       * scancode as random inputs into the "entropy pool".
       * 
       * add_mouse_randomness() uses the mouse interrupt timing, as well as
       * the reported position of the mouse from the hardware.
       *
       * add_interrupt_randomness() uses the inter-interrupt timing as random
       * inputs to the entropy pool.  Note that not all interrupts are good
       * sources of randomness!  For example, the timer interrupts is not a
       * good choice, because the periodicity of the interrupts is too
       * regular, and hence predictable to an attacker.  Disk interrupts are
       * a better measure, since the timing of the disk interrupts are more
       * unpredictable.
       * 
       * add_blkdev_randomness() times the finishing time of block requests.
       * 
       * All of these routines try to estimate how many bits of randomness a
       * particular randomness source.  They do this by keeping track of the
       * first and second order deltas of the event timings.
       *
       * Ensuring unpredictability at system startup
       * ============================================
       * 
       * When any operating system starts up, it will go through a sequence
       * of actions that are fairly predictable by an adversary, especially
       * if the start-up does not involve interaction with a human operator.
       * This reduces the actual number of bits of unpredictability in the
       * entropy pool below the value in entropy_count.  In order to
       * counteract this effect, it helps to carry information in the
       * entropy pool across shut-downs and start-ups.  To do this, put the
       * following lines an appropriate script which is run during the boot
       * sequence: 
       *
       *	echo "Initializing random number generator..."
       * 	random_seed=/var/run/random-seed
       *	# Carry a random seed from start-up to start-up
       *	# Load and then save 512 bytes, which is the size of the entropy pool
       * 	if [ -f $random_seed ]; then
       *		cat $random_seed >/dev/urandom
       * 	fi
       *	dd if=/dev/urandom of=$random_seed count=1
       * 	chmod 600 $random_seed
       *
       * and the following lines in an appropriate script which is run as
       * the system is shutdown:
       * 
       *	# Carry a random seed from shut-down to start-up
       *	# Save 512 bytes, which is the size of the entropy pool
       *	echo "Saving random seed..."
       * 	random_seed=/var/run/random-seed
       *	dd if=/dev/urandom of=$random_seed count=1
       * 	chmod 600 $random_seed
       * 
       * For example, on most modern systems using the System V init
       * scripts, such code fragments would be found in
       * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
       * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
       * 
       * Effectively, these commands cause the contents of the entropy pool
       * to be saved at shut-down time and reloaded into the entropy pool at
       * start-up.  (The 'dd' in the addition to the bootup script is to
       * make sure that /etc/random-seed is different for every start-up,
       * even if the system crashes without executing rc.0.)  Even with
       * complete knowledge of the start-up activities, predicting the state
       * of the entropy pool requires knowledge of the previous history of
       * the system.
       *
       * Configuring the /dev/random driver under Linux
       * ==============================================
       *
       * The /dev/random driver under Linux uses minor numbers 8 and 9 of
       * the /dev/mem major number (#1).  So if your system does not have
       * /dev/random and /dev/urandom created already, they can be created
       * by using the commands:
       *
       * 	mknod /dev/random c 1 8
       * 	mknod /dev/urandom c 1 9
       * 
       * Acknowledgements:
       * =================
       *
       * Ideas for constructing this random number generator were derived
       * from Pretty Good Privacy's random number generator, and from private
       * discussions with Phil Karn.  Colin Plumb provided a faster random
       * number generator, which speed up the mixing function of the entropy
       * pool, taken from PGPfone.  Dale Worley has also contributed many
       * useful ideas and suggestions to improve this driver.
       * 
       * Any flaws in the design are solely my responsibility, and should
       * not be attributed to the Phil, Colin, or any of authors of PGP.
       * 
       * The code for SHA transform was taken from Peter Gutmann's
       * implementation, which has been placed in the public domain.
       * The code for MD5 transform was taken from Colin Plumb's
       * implementation, which has been placed in the public domain.
       * The MD5 cryptographic checksum was devised by Ronald Rivest, and is
       * documented in RFC 1321, "The MD5 Message Digest Algorithm".
       * 
       * Further background information on this topic may be obtained from
       * RFC 1750, "Randomness Recommendations for Security", by Donald
       * Eastlake, Steve Crocker, and Jeff Schiller.
       */
      
      #include <linux/utsname.h>
      #include <linux/config.h>
      #include <linux/module.h>
      #include <linux/kernel.h>
      #include <linux/major.h>
      #include <linux/string.h>
      #include <linux/fcntl.h>
      #include <linux/malloc.h>
      #include <linux/random.h>
      #include <linux/poll.h>
      #include <linux/init.h>
      
      #include <asm/processor.h>
      #include <asm/uaccess.h>
      #include <asm/irq.h>
      #include <asm/io.h>
      
      /*
       * Configuration information
       */
      #define DEFAULT_POOL_SIZE 512
      #define SECONDARY_POOL_SIZE 128
      #define BATCH_ENTROPY_SIZE 256
      #define USE_SHA
      
      /*
       * The minimum number of bits of entropy before we wake up a read on
       * /dev/random.  Should always be at least 8, or at least 1 byte.
       */
      static int random_read_wakeup_thresh = 8;
      
      /*
       * If the entropy count falls under this number of bits, then we
       * should wake up processes which are selecting or polling on write
       * access to /dev/random.
       */
      static int random_write_wakeup_thresh = 128;
      
      /*
       * A pool of size POOLWORDS is stirred with a primitive polynomial
       * of degree POOLWORDS over GF(2).  The taps for various sizes are
       * defined below.  They are chosen to be evenly spaced (minimum RMS
       * distance from evenly spaced; the numbers in the comments are a
       * scaled squared error sum) except for the last tap, which is 1 to
       * get the twisting happening as fast as possible.
       */
      static struct poolinfo {
      	int	poolwords;
      	int	tap1, tap2, tap3, tap4, tap5;
      } poolinfo_table[] = {
      	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
      	{ 2048,	1638,	1231,	819, 	411,	1 },
      
      	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
      	{ 1024,	817, 	615,	412,	204,	1 },
      
      #if 0				/* Alternate polynomial */
      	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
      	{ 1024,	819,	616,	410,	207,	2 },
      #endif
      	
      	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
      	{ 512,	411,	308,	208,	104,	1 },
      
      #if 0				/* Alternates */
      	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
      	{ 512,	409,	307,	206,	102,	2 },
      	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
      	{ 512,	409,	309,	205,	103,	2 },
      #endif
      
      	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
      	{ 256,	205,	155,	101,	52,	1 },
      	
      	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
      	{ 128,	103,	76,	51,	25,	1 },
      
      #if 0	/* Alternate polynomial */
      	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
      	{ 128,	103,	78,	51,	27,	2 },
      #endif
      
      	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
      	{ 64,	52,	39,	26,	14,	1 },
      
      	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
      	{ 32,	26,	20,	14,	7,	1 },
      
      	{ 0, 	0,	0,	0,	0,	0 },
      };		
      	
      /*
       * For the purposes of better mixing, we use the CRC-32 polynomial as
       * well to make a twisted Generalized Feedback Shift Reigster
       *
       * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
       * Transactions on Modeling and Computer Simulation 2(3):179-194.
       * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
       * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
       *
       * Thanks to Colin Plumb for suggesting this.
       * 
       * We have not analyzed the resultant polynomial to prove it primitive;
       * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
       * of a random large-degree polynomial over GF(2) are more than large enough
       * that periodicity is not a concern.
       * 
       * The input hash is much less sensitive than the output hash.  All
       * that we want of it is that it be a good non-cryptographic hash;
       * i.e. it not produce collisions when fed "random" data of the sort
       * we expect to see.  As long as the pool state differs for different
       * inputs, we have preserved the input entropy and done a good job.
       * The fact that an intelligent attacker can construct inputs that
       * will produce controlled alterations to the pool's state is not
       * important because we don't consider such inputs to contribute any
       * randomness.  The only property we need with respect to them is that
       * the attacker can't increase his/her knowledge of the pool's state.
       * Since all additions are reversible (knowing the final state and the
       * input, you can reconstruct the initial state), if an attacker has
       * any uncertainty about the initial state, he/she can only shuffle
       * that uncertainty about, but never cause any collisions (which would
       * decrease the uncertainty).
       *
       * The chosen system lets the state of the pool be (essentially) the input
       * modulo the generator polymnomial.  Now, for random primitive polynomials,
       * this is a universal class of hash functions, meaning that the chance
       * of a collision is limited by the attacker's knowledge of the generator
       * polynomail, so if it is chosen at random, an attacker can never force
       * a collision.  Here, we use a fixed polynomial, but we *can* assume that
       * ###--> it is unknown to the processes generating the input entropy. <-###
       * Because of this important property, this is a good, collision-resistant
       * hash; hash collisions will occur no more often than chance.
       */
      
      /*
       * Linux 2.2 compatibility
       */
      #ifndef DECLARE_WAITQUEUE
      #define DECLARE_WAITQUEUE(WAIT, PTR)	struct wait_queue WAIT = { PTR, NULL }
      #endif
      #ifndef DECLARE_WAIT_QUEUE_HEAD
      #define DECLARE_WAIT_QUEUE_HEAD(WAIT) struct wait_queue *WAIT
      #endif
      
      /*
       * Static global variables
       */
      static struct entropy_store *random_state; /* The default global store */
      static struct entropy_store *sec_random_state; /* secondary store */
      static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
      static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
      
      /*
       * Forward procedure declarations
       */
      #ifdef CONFIG_SYSCTL
      static void sysctl_init_random(struct entropy_store *random_state);
      #endif
      
      /*****************************************************************
       *
       * Utility functions, with some ASM defined functions for speed
       * purposes
       * 
       *****************************************************************/
      
      #ifndef MIN
      #define MIN(a,b) (((a) < (b)) ? (a) : (b))
      #endif
      
      /*
       * Unfortunately, while the GCC optimizer for the i386 understands how
       * to optimize a static rotate left of x bits, it doesn't know how to
       * deal with a variable rotate of x bits.  So we use a bit of asm magic.
       */
      #if (!defined (__i386__))
      extern inline __u32 rotate_left(int i, __u32 word)
      {
      	return (word << i) | (word >> (32 - i));
      	
      }
      #else
 418  extern inline __u32 rotate_left(int i, __u32 word)
      {
      	__asm__("roll %%cl,%0"
      		:"=r" (word)
      		:"0" (word),"c" (i));
 423  	return word;
      }
      #endif
      
      /*
       * More asm magic....
       * 
       * For entropy estimation, we need to do an integral base 2
       * logarithm.  
       *
       * Note the "12bits" suffix - this is used for numbers between
       * 0 and 4095 only.  This allows a few shortcuts.
       */
      #if 0	/* Slow but clear version */
      static inline __u32 int_ln_12bits(__u32 word)
      {
      	__u32 nbits = 0;
      	
      	while (word >>= 1)
      		nbits++;
      	return nbits;
      }
      #else	/* Faster (more clever) version, courtesy Colin Plumb */
 446  static inline __u32 int_ln_12bits(__u32 word)
      {
      	/* Smear msbit right to make an n-bit mask */
      	word |= word >> 8;
      	word |= word >> 4;
      	word |= word >> 2;
      	word |= word >> 1;
      	/* Remove one bit to make this a logarithm */
      	word >>= 1;
      	/* Count the bits set in the word */
      	word -= (word >> 1) & 0x555;
      	word = (word & 0x333) + ((word >> 2) & 0x333);
      	word += (word >> 4);
      	word += (word >> 8);
 460  	return word & 15;
      }
      #endif
      
      /**********************************************************************
       *
       * OS independent entropy store.   Here are the functions which handle
       * storing entropy in an entropy pool.
       * 
       **********************************************************************/
      
      struct entropy_store {
      	unsigned	add_ptr;
      	int		entropy_count;
      	int		input_rotate;
      	int		extract_count;
      	struct poolinfo poolinfo;
      	__u32		*pool;
      };
      
      /*
       * Initialize the entropy store.  The input argument is the size of
       * the random pool.
       * 
       * Returns an negative error if there is a problem.
       */
 486  static int create_entropy_store(int size, struct entropy_store **ret_bucket)
      {
      	struct	entropy_store	*r;
      	struct	poolinfo	*p;
      	int	poolwords;
      
      	poolwords = (size + 3) / 4; /* Convert bytes->words */
      	/* The pool size must be a multiple of 16 32-bit words */
      	poolwords = ((poolwords + 15) / 16) * 16; 
      
 496  	for (p = poolinfo_table; p->poolwords; p++) {
 497  		if (poolwords == p->poolwords)
 498  			break;
      	}
 500  	if (p->poolwords == 0)
 501  		return -EINVAL;
      
      	r = kmalloc(sizeof(struct entropy_store), GFP_KERNEL);
 504  	if (!r)
 505  		return -ENOMEM;
      
      	memset (r, 0, sizeof(struct entropy_store));
      	r->poolinfo = *p;
      
      	r->pool = kmalloc(poolwords*4, GFP_KERNEL);
 511  	if (!r->pool) {
      		kfree(r);
 513  		return -ENOMEM;
      	}
      	memset(r->pool, 0, poolwords*4);
      	*ret_bucket = r;
 517  	return 0;
      }
      
      /* Clear the entropy pool and associated counters. */
 521  static void clear_entropy_store(struct entropy_store *r)
      {
      	r->add_ptr = 0;
      	r->entropy_count = 0;
      	r->input_rotate = 0;
      	r->extract_count = 0;
      	memset(r->pool, 0, r->poolinfo.poolwords*4);
      }
      
 530  static void free_entropy_store(struct entropy_store *r)
      {
 532  	if (r->pool)
      		kfree(r->pool);
      	kfree(r);
      }
      
      /*
       * This function adds a byte into the entropy "pool".  It does not
       * update the entropy estimate.  The caller should call
       * credit_entropy_store if this is appropriate.
       * 
       * The pool is stirred with a primitive polynomial of the appropriate
       * degree, and then twisted.  We twist by three bits at a time because
       * it's cheap to do so and helps slightly in the expected case where
       * the entropy is concentrated in the low-order bits.
       */
 547  static void add_entropy_words(struct entropy_store *r, const __u32 *in,
      			     int num)
      {
      	static __u32 const twist_table[8] = {
      		         0, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
      		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
      	unsigned i;
      	int new_rotate;
      	__u32 w;
      
 557  	while (num--) {
      		w = rotate_left(r->input_rotate, *in);
      		i = r->add_ptr = (r->add_ptr - 1) & (r->poolinfo.poolwords-1);
      		/*
      		 * Normally, we add 7 bits of rotation to the pool.
      		 * At the beginning of the pool, add an extra 7 bits
      		 * rotation, so that successive passes spread the
      		 * input bits across the pool evenly.
      		 */
      		new_rotate = r->input_rotate + 14;
 567  		if (i)
      			new_rotate = r->input_rotate + 7;
      		r->input_rotate = new_rotate & 31;
      
      		/* XOR in the various taps */
      		w ^= r->pool[(i+r->poolinfo.tap1)&(r->poolinfo.poolwords-1)];
      		w ^= r->pool[(i+r->poolinfo.tap2)&(r->poolinfo.poolwords-1)];
      		w ^= r->pool[(i+r->poolinfo.tap3)&(r->poolinfo.poolwords-1)];
      		w ^= r->pool[(i+r->poolinfo.tap4)&(r->poolinfo.poolwords-1)];
      		w ^= r->pool[(i+r->poolinfo.tap5)&(r->poolinfo.poolwords-1)];
      		w ^= r->pool[i];
      		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
      	}
      }
      
      /*
       * Credit (or debit) the entropy store with n bits of entropy
       */
 585  static void credit_entropy_store(struct entropy_store *r, int num)
      {
      	int	max_entropy = r->poolinfo.poolwords*32;
      
 589  	if (r->entropy_count + num < 0)
      		r->entropy_count = 0;
 591  	else if (r->entropy_count + num > max_entropy)
      		r->entropy_count = max_entropy;
 593  	else
      		r->entropy_count = r->entropy_count + num;
      }
      
      /**********************************************************************
       *
       * Entropy batch input management
       *
       * We batch entropy to be added to avoid increasing interrupt latency
       *
       **********************************************************************/
      
      static __u32	*batch_entropy_pool;
      static int	*batch_entropy_credit;
      static int	batch_max;
      static int	batch_head, batch_tail;
      static struct tq_struct	batch_tqueue;
      static void batch_entropy_process(void *private_);
      
      /* note: the size must be a power of 2 */
 613  static int batch_entropy_init(int size, struct entropy_store *r)
      {
      	batch_entropy_pool = kmalloc(2*size*sizeof(__u32), GFP_KERNEL);
 616  	if (!batch_entropy_pool)
 617  		return -1;
      	batch_entropy_credit =kmalloc(size*sizeof(int), GFP_KERNEL);
 619  	if (!batch_entropy_credit) {
      		kfree(batch_entropy_pool);
 621  		return -1;
      	}
      	batch_head = batch_tail = 0;
      	batch_max = size;
      	batch_tqueue.routine = batch_entropy_process;
      	batch_tqueue.data = r;
 627  	return 0;
      }
      
 630  void batch_entropy_store(u32 a, u32 b, int num)
      {
      	int	new;
      
 634  	if (!batch_max)
 635  		return;
      	
      	batch_entropy_pool[2*batch_head] = a;
      	batch_entropy_pool[(2*batch_head) + 1] = b;
      	batch_entropy_credit[batch_head] = num;
      
      	new = (batch_head+1) & (batch_max-1);
 642  	if (new != batch_tail) {
      		queue_task(&batch_tqueue, &tq_timer);
      		batch_head = new;
 645  	} else {
      #if 0
      		printk(KERN_NOTICE "random: batch entropy buffer full\n");
      #endif
      	}
      }
      
 652  static void batch_entropy_process(void *private_)
      {
      	int	num = 0;
      	int	max_entropy;
      	struct entropy_store *r	= (struct entropy_store *) private_, *p;
      	
 658  	if (!batch_max)
 659  		return;
      
      	max_entropy = r->poolinfo.poolwords*32;
 662  	while (batch_head != batch_tail) {
      		add_entropy_words(r, batch_entropy_pool + 2*batch_tail, 2);
      		p = r;
 665  		if (r->entropy_count > max_entropy && (num & 1))
      			r = sec_random_state;
      		credit_entropy_store(r, batch_entropy_credit[batch_tail]);
      		batch_tail = (batch_tail+1) & (batch_max-1);
      		num++;
      	}
 671  	if (r->entropy_count >= random_read_wakeup_thresh)
      		wake_up_interruptible(&random_read_wait);
      }
      
      /*********************************************************************
       *
       * Entropy input management
       *
       *********************************************************************/
      
      /* There is one of these per entropy source */
      struct timer_rand_state {
      	__u32		last_time;
      	__s32		last_delta,last_delta2;
      	int		dont_count_entropy:1;
      };
      
      static struct timer_rand_state keyboard_timer_state;
      static struct timer_rand_state mouse_timer_state;
      static struct timer_rand_state extract_timer_state;
      static struct timer_rand_state *irq_timer_state[NR_IRQS];
      static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];
      
      /*
       * This function adds entropy to the entropy "pool" by using timing
       * delays.  It uses the timer_rand_state structure to make an estimate
       * of how many bits of entropy this call has added to the pool.
       *
       * The number "num" is also added to the pool - it should somehow describe
       * the type of event which just happened.  This is currently 0-255 for
       * keyboard scan codes, and 256 upwards for interrupts.
       * On the i386, this is assumed to be at most 16 bits, and the high bits
       * are used for a high-resolution timer.
       *
       */
 706  static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
      {
      	__u32		time;
      	__s32		delta, delta2, delta3;
      	int		entropy = 0;
      
      #if defined (__i386__)
 713  	if ( test_bit(X86_FEATURE_TSC, &boot_cpu_data.x86_capability) ) {
      		__u32 high;
      		__asm__(".byte 0x0f,0x31"
      			:"=a" (time), "=d" (high));
      		num ^= high;
 718  	} else {
      		time = jiffies;
      	}
      #else
      	time = jiffies;
      #endif
      
      	/*
      	 * Calculate number of bits of randomness we probably added.
      	 * We take into account the first, second and third-order deltas
      	 * in order to make our estimate.
      	 */
 730  	if (!state->dont_count_entropy) {
      		delta = time - state->last_time;
      		state->last_time = time;
      
      		delta2 = delta - state->last_delta;
      		state->last_delta = delta;
      
      		delta3 = delta2 - state->last_delta2;
      		state->last_delta2 = delta2;
      
 740  		if (delta < 0)
      			delta = -delta;
 742  		if (delta2 < 0)
      			delta2 = -delta2;
 744  		if (delta3 < 0)
      			delta3 = -delta3;
 746  		if (delta > delta2)
      			delta = delta2;
 748  		if (delta > delta3)
      			delta = delta3;
      
      		/*
      		 * delta is now minimum absolute delta.
      		 * Round down by 1 bit on general principles,
      		 * and limit entropy entimate to 12 bits.
      		 */
      		delta >>= 1;
      		delta &= (1 << 12) - 1;
      
      		entropy = int_ln_12bits(delta);
      	}
      	batch_entropy_store(num, time, entropy);
      }
      
 764  void add_keyboard_randomness(unsigned char scancode)
      {
      	static unsigned char last_scancode;
      	/* ignore autorepeat (multiple key down w/o key up) */
 768  	if (scancode != last_scancode) {
      		last_scancode = scancode;
      		add_timer_randomness(&keyboard_timer_state, scancode);
      	}
      }
      
 774  void add_mouse_randomness(__u32 mouse_data)
      {
      	add_timer_randomness(&mouse_timer_state, mouse_data);
      }
      
 779  void add_interrupt_randomness(int irq)
      {
 781  	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
 782  		return;
      
      	add_timer_randomness(irq_timer_state[irq], 0x100+irq);
      }
      
 787  void add_blkdev_randomness(int major)
      {
 789  	if (major >= MAX_BLKDEV)
 790  		return;
      
 792  	if (blkdev_timer_state[major] == 0) {
      		rand_initialize_blkdev(major, GFP_ATOMIC);
 794  		if (blkdev_timer_state[major] == 0)
 795  			return;
      	}
      		
      	add_timer_randomness(blkdev_timer_state[major], 0x200+major);
      }
      
      /******************************************************************
       *
       * Hash function definition
       *
       *******************************************************************/
      
      /*
       * This chunk of code defines a function
       * void HASH_TRANSFORM(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
       * 		__u32 const data[16])
       * 
       * The function hashes the input data to produce a digest in the first
       * HASH_BUFFER_SIZE words of the digest[] array, and uses HASH_EXTRA_SIZE
       * more words for internal purposes.  (This buffer is exported so the
       * caller can wipe it once rather than this code doing it each call,
       * and tacking it onto the end of the digest[] array is the quick and
       * dirty way of doing it.)
       *
       * It so happens that MD5 and SHA share most of the initial vector
       * used to initialize the digest[] array before the first call:
       * 1) 0x67452301
       * 2) 0xefcdab89
       * 3) 0x98badcfe
       * 4) 0x10325476
       * 5) 0xc3d2e1f0 (SHA only)
       * 
       * For /dev/random purposes, the length of the data being hashed is
       * fixed in length, so appending a bit count in the usual way is not
       * cryptographically necessary.
       */
      
      #ifdef USE_SHA
      
      #define HASH_BUFFER_SIZE 5
      #define HASH_EXTRA_SIZE 80
      #define HASH_TRANSFORM SHATransform
      
      /* Various size/speed tradeoffs are available.  Choose 0..3. */
      #define SHA_CODE_SIZE 0
      
      /*
       * SHA transform algorithm, taken from code written by Peter Gutmann,
       * and placed in the public domain.
       */
      
      /* The SHA f()-functions.  */
      
      #define f1(x,y,z)   ( z ^ (x & (y^z)) )		/* Rounds  0-19: x ? y : z */
      #define f2(x,y,z)   (x ^ y ^ z)			/* Rounds 20-39: XOR */
      #define f3(x,y,z)   ( (x & y) + (z & (x ^ y)) )	/* Rounds 40-59: majority */
      #define f4(x,y,z)   (x ^ y ^ z)			/* Rounds 60-79: XOR */
      
      /* The SHA Mysterious Constants */
      
      #define K1  0x5A827999L			/* Rounds  0-19: sqrt(2) * 2^30 */
      #define K2  0x6ED9EBA1L			/* Rounds 20-39: sqrt(3) * 2^30 */
      #define K3  0x8F1BBCDCL			/* Rounds 40-59: sqrt(5) * 2^30 */
      #define K4  0xCA62C1D6L			/* Rounds 60-79: sqrt(10) * 2^30 */
      
      #define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )
      
      #define subRound(a, b, c, d, e, f, k, data) \
          ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
      
      
 866  static void SHATransform(__u32 digest[85], __u32 const data[16])
      {
          __u32 A, B, C, D, E;     /* Local vars */
          __u32 TEMP;
          int	i;
      #define W (digest + HASH_BUFFER_SIZE)	/* Expanded data array */
      
          /*
           * Do the preliminary expansion of 16 to 80 words.  Doing it
           * out-of-line line this is faster than doing it in-line on
           * register-starved machines like the x86, and not really any
           * slower on real processors.
           */
          memcpy(W, data, 16*sizeof(__u32));
 880      for (i = 0; i < 64; i++) {
      	    TEMP = W[i] ^ W[i+2] ^ W[i+8] ^ W[i+13];
      	    W[i+16] = ROTL(1, TEMP);
          }
      
          /* Set up first buffer and local data buffer */
          A = digest[ 0 ];
          B = digest[ 1 ];
          C = digest[ 2 ];
          D = digest[ 3 ];
          E = digest[ 4 ];
      
          /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
      #if SHA_CODE_SIZE == 0
          /*
           * Approximately 50% of the speed of the largest version, but
           * takes up 1/16 the space.  Saves about 6k on an i386 kernel.
           */
 898      for (i = 0; i < 80; i++) {
 899  	if (i < 40) {
 900  	    if (i < 20)
      		TEMP = f1(B, C, D) + K1;
 902  	    else
      		TEMP = f2(B, C, D) + K2;
 904  	} else {
 905  	    if (i < 60)
      		TEMP = f3(B, C, D) + K3;
 907  	    else
      		TEMP = f4(B, C, D) + K4;
      	}
      	TEMP += ROTL(5, A) + E + W[i];
      	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
          }
      #elif SHA_CODE_SIZE == 1
          for (i = 0; i < 20; i++) {
      	TEMP = f1(B, C, D) + K1 + ROTL(5, A) + E + W[i];
      	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
          }
          for (; i < 40; i++) {
      	TEMP = f2(B, C, D) + K2 + ROTL(5, A) + E + W[i];
      	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
          }
          for (; i < 60; i++) {
      	TEMP = f3(B, C, D) + K3 + ROTL(5, A) + E + W[i];
      	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
          }
          for (; i < 80; i++) {
      	TEMP = f4(B, C, D) + K4 + ROTL(5, A) + E + W[i];
      	E = D; D = C; C = ROTL(30, B); B = A; A = TEMP;
          }
      #elif SHA_CODE_SIZE == 2
          for (i = 0; i < 20; i += 5) {
      	subRound( A, B, C, D, E, f1, K1, W[ i   ] );
      	subRound( E, A, B, C, D, f1, K1, W[ i+1 ] );
      	subRound( D, E, A, B, C, f1, K1, W[ i+2 ] );
      	subRound( C, D, E, A, B, f1, K1, W[ i+3 ] );
      	subRound( B, C, D, E, A, f1, K1, W[ i+4 ] );
          }
          for (; i < 40; i += 5) {
      	subRound( A, B, C, D, E, f2, K2, W[ i   ] );
      	subRound( E, A, B, C, D, f2, K2, W[ i+1 ] );
      	subRound( D, E, A, B, C, f2, K2, W[ i+2 ] );
      	subRound( C, D, E, A, B, f2, K2, W[ i+3 ] );
      	subRound( B, C, D, E, A, f2, K2, W[ i+4 ] );
          }
          for (; i < 60; i += 5) {
      	subRound( A, B, C, D, E, f3, K3, W[ i   ] );
      	subRound( E, A, B, C, D, f3, K3, W[ i+1 ] );
      	subRound( D, E, A, B, C, f3, K3, W[ i+2 ] );
      	subRound( C, D, E, A, B, f3, K3, W[ i+3 ] );
      	subRound( B, C, D, E, A, f3, K3, W[ i+4 ] );
          }
          for (; i < 80; i += 5) {
      	subRound( A, B, C, D, E, f4, K4, W[ i   ] );
      	subRound( E, A, B, C, D, f4, K4, W[ i+1 ] );
      	subRound( D, E, A, B, C, f4, K4, W[ i+2 ] );
      	subRound( C, D, E, A, B, f4, K4, W[ i+3 ] );
      	subRound( B, C, D, E, A, f4, K4, W[ i+4 ] );
          }
      #elif SHA_CODE_SIZE == 3 /* Really large version */
          subRound( A, B, C, D, E, f1, K1, W[  0 ] );
          subRound( E, A, B, C, D, f1, K1, W[  1 ] );
          subRound( D, E, A, B, C, f1, K1, W[  2 ] );
          subRound( C, D, E, A, B, f1, K1, W[  3 ] );
          subRound( B, C, D, E, A, f1, K1, W[  4 ] );
          subRound( A, B, C, D, E, f1, K1, W[  5 ] );
          subRound( E, A, B, C, D, f1, K1, W[  6 ] );
          subRound( D, E, A, B, C, f1, K1, W[  7 ] );
          subRound( C, D, E, A, B, f1, K1, W[  8 ] );
          subRound( B, C, D, E, A, f1, K1, W[  9 ] );
          subRound( A, B, C, D, E, f1, K1, W[ 10 ] );
          subRound( E, A, B, C, D, f1, K1, W[ 11 ] );
          subRound( D, E, A, B, C, f1, K1, W[ 12 ] );
          subRound( C, D, E, A, B, f1, K1, W[ 13 ] );
          subRound( B, C, D, E, A, f1, K1, W[ 14 ] );
          subRound( A, B, C, D, E, f1, K1, W[ 15 ] );
          subRound( E, A, B, C, D, f1, K1, W[ 16 ] );
          subRound( D, E, A, B, C, f1, K1, W[ 17 ] );
          subRound( C, D, E, A, B, f1, K1, W[ 18 ] );
          subRound( B, C, D, E, A, f1, K1, W[ 19 ] );
      
          subRound( A, B, C, D, E, f2, K2, W[ 20 ] );
          subRound( E, A, B, C, D, f2, K2, W[ 21 ] );
          subRound( D, E, A, B, C, f2, K2, W[ 22 ] );
          subRound( C, D, E, A, B, f2, K2, W[ 23 ] );
          subRound( B, C, D, E, A, f2, K2, W[ 24 ] );
          subRound( A, B, C, D, E, f2, K2, W[ 25 ] );
          subRound( E, A, B, C, D, f2, K2, W[ 26 ] );
          subRound( D, E, A, B, C, f2, K2, W[ 27 ] );
          subRound( C, D, E, A, B, f2, K2, W[ 28 ] );
          subRound( B, C, D, E, A, f2, K2, W[ 29 ] );
          subRound( A, B, C, D, E, f2, K2, W[ 30 ] );
          subRound( E, A, B, C, D, f2, K2, W[ 31 ] );
          subRound( D, E, A, B, C, f2, K2, W[ 32 ] );
          subRound( C, D, E, A, B, f2, K2, W[ 33 ] );
          subRound( B, C, D, E, A, f2, K2, W[ 34 ] );
          subRound( A, B, C, D, E, f2, K2, W[ 35 ] );
          subRound( E, A, B, C, D, f2, K2, W[ 36 ] );
          subRound( D, E, A, B, C, f2, K2, W[ 37 ] );
          subRound( C, D, E, A, B, f2, K2, W[ 38 ] );
          subRound( B, C, D, E, A, f2, K2, W[ 39 ] );
          
          subRound( A, B, C, D, E, f3, K3, W[ 40 ] );
          subRound( E, A, B, C, D, f3, K3, W[ 41 ] );
          subRound( D, E, A, B, C, f3, K3, W[ 42 ] );
          subRound( C, D, E, A, B, f3, K3, W[ 43 ] );
          subRound( B, C, D, E, A, f3, K3, W[ 44 ] );
          subRound( A, B, C, D, E, f3, K3, W[ 45 ] );
          subRound( E, A, B, C, D, f3, K3, W[ 46 ] );
          subRound( D, E, A, B, C, f3, K3, W[ 47 ] );
          subRound( C, D, E, A, B, f3, K3, W[ 48 ] );
          subRound( B, C, D, E, A, f3, K3, W[ 49 ] );
          subRound( A, B, C, D, E, f3, K3, W[ 50 ] );
          subRound( E, A, B, C, D, f3, K3, W[ 51 ] );
          subRound( D, E, A, B, C, f3, K3, W[ 52 ] );
          subRound( C, D, E, A, B, f3, K3, W[ 53 ] );
          subRound( B, C, D, E, A, f3, K3, W[ 54 ] );
          subRound( A, B, C, D, E, f3, K3, W[ 55 ] );
          subRound( E, A, B, C, D, f3, K3, W[ 56 ] );
          subRound( D, E, A, B, C, f3, K3, W[ 57 ] );
          subRound( C, D, E, A, B, f3, K3, W[ 58 ] );
          subRound( B, C, D, E, A, f3, K3, W[ 59 ] );
      
          subRound( A, B, C, D, E, f4, K4, W[ 60 ] );
          subRound( E, A, B, C, D, f4, K4, W[ 61 ] );
          subRound( D, E, A, B, C, f4, K4, W[ 62 ] );
          subRound( C, D, E, A, B, f4, K4, W[ 63 ] );
          subRound( B, C, D, E, A, f4, K4, W[ 64 ] );
          subRound( A, B, C, D, E, f4, K4, W[ 65 ] );
          subRound( E, A, B, C, D, f4, K4, W[ 66 ] );
          subRound( D, E, A, B, C, f4, K4, W[ 67 ] );
          subRound( C, D, E, A, B, f4, K4, W[ 68 ] );
          subRound( B, C, D, E, A, f4, K4, W[ 69 ] );
          subRound( A, B, C, D, E, f4, K4, W[ 70 ] );
          subRound( E, A, B, C, D, f4, K4, W[ 71 ] );
          subRound( D, E, A, B, C, f4, K4, W[ 72 ] );
          subRound( C, D, E, A, B, f4, K4, W[ 73 ] );
          subRound( B, C, D, E, A, f4, K4, W[ 74 ] );
          subRound( A, B, C, D, E, f4, K4, W[ 75 ] );
          subRound( E, A, B, C, D, f4, K4, W[ 76 ] );
          subRound( D, E, A, B, C, f4, K4, W[ 77 ] );
          subRound( C, D, E, A, B, f4, K4, W[ 78 ] );
          subRound( B, C, D, E, A, f4, K4, W[ 79 ] );
      #else
      #error Illegal SHA_CODE_SIZE
      #endif
      
          /* Build message digest */
          digest[ 0 ] += A;
          digest[ 1 ] += B;
          digest[ 2 ] += C;
          digest[ 3 ] += D;
          digest[ 4 ] += E;
      
      	/* W is wiped by the caller */
      #undef W
      }
      
      #undef ROTL
      #undef f1
      #undef f2
      #undef f3
      #undef f4
      #undef K1	
      #undef K2
      #undef K3	
      #undef K4	
      #undef subRound
      	
      #else /* !USE_SHA - Use MD5 */
      
      #define HASH_BUFFER_SIZE 4
      #define HASH_EXTRA_SIZE 0
      #define HASH_TRANSFORM MD5Transform
      	
      /*
       * MD5 transform algorithm, taken from code written by Colin Plumb,
       * and put into the public domain
       */
      
      /* The four core functions - F1 is optimized somewhat */
      
      /* #define F1(x, y, z) (x & y | ~x & z) */
      #define F1(x, y, z) (z ^ (x & (y ^ z)))
      #define F2(x, y, z) F1(z, x, y)
      #define F3(x, y, z) (x ^ y ^ z)
      #define F4(x, y, z) (y ^ (x | ~z))
      
      /* This is the central step in the MD5 algorithm. */
      #define MD5STEP(f, w, x, y, z, data, s) \
      	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
      
      /*
       * The core of the MD5 algorithm, this alters an existing MD5 hash to
       * reflect the addition of 16 longwords of new data.  MD5Update blocks
       * the data and converts bytes into longwords for this routine.
       */
      static void MD5Transform(__u32 buf[HASH_BUFFER_SIZE], __u32 const in[16])
      {
      	__u32 a, b, c, d;
      
      	a = buf[0];
      	b = buf[1];
      	c = buf[2];
      	d = buf[3];
      
      	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
      	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
      	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
      	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
      	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
      	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
      	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
      	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
      	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
      	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
      	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
      	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
      	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
      	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
      	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
      	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
      
      	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
      	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
      	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
      	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
      	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
      	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
      	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
      	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
      	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
      	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
      	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
      	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
      	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
      	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
      	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
      	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
      
      	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
      	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
      	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
      	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
      	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
      	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
      	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
      	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
      	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
      	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
      	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
      	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
      	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
      	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
      	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
      	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
      
      	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
      	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
      	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
      	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
      	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
      	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
      	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
      	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
      	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
      	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
      	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
      	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
      	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
      	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
      	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
      	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
      
      	buf[0] += a;
      	buf[1] += b;
      	buf[2] += c;
      	buf[3] += d;
      }
      
      #undef F1
      #undef F2
      #undef F3
      #undef F4
      #undef MD5STEP
      
      #endif /* !USE_SHA */
      
      /*********************************************************************
       *
       * Entropy extraction routines
       *
       *********************************************************************/
      
      #define EXTRACT_ENTROPY_USER		1
      #define EXTRACT_ENTROPY_SECONDARY	2
      #define TMP_BUF_SIZE			(HASH_BUFFER_SIZE + HASH_EXTRA_SIZE)
      #define SEC_XFER_SIZE			(TMP_BUF_SIZE*4)
      
      static ssize_t extract_entropy(struct entropy_store *r, void * buf,
      			       size_t nbytes, int flags);
      
      /*
       * This utility inline function is responsible for transfering entropy
       * from the primary pool to the secondary extraction pool.  We pull 
       * randomness under two conditions; one is if there isn't enough entropy 
       * in the secondary pool.  The other is after we have extract 1024 bytes,
       * at which point we do a "catastrophic reseeding".
       */
1209  static inline void xfer_secondary_pool(struct entropy_store *r,
      				       size_t nbytes)
      {
      	__u32	tmp[TMP_BUF_SIZE];
      
1214  	if (r->entropy_count < nbytes*8) {
      		extract_entropy(random_state, tmp, sizeof(tmp), 0);
      		add_entropy_words(r, tmp, TMP_BUF_SIZE);
      		credit_entropy_store(r, TMP_BUF_SIZE*8);
      	}
1219  	if (r->extract_count > 1024) {
      		extract_entropy(random_state, tmp, sizeof(tmp), 0);
      		add_entropy_words(r, tmp, TMP_BUF_SIZE);
      		r->extract_count = 0;
      	}
      }
      
      /*
       * This function extracts randomness from the "entropy pool", and
       * returns it in a buffer.  This function computes how many remaining
       * bits of entropy are left in the pool, but it does not restrict the
       * number of bytes that are actually obtained.  If the EXTRACT_ENTROPY_USER
       * flag is given, then the buf pointer is assumed to be in user space.
       * If the EXTRACT_ENTROPY_SECONDARY flag is given, then this function will 
       *
       * Note: extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
       */
1236  static ssize_t extract_entropy(struct entropy_store *r, void * buf,
      			       size_t nbytes, int flags)
      {
      	ssize_t ret, i;
      	__u32 tmp[TMP_BUF_SIZE];
      	__u32 x;
      
      	add_timer_randomness(&extract_timer_state, nbytes);
      	
      	/* Redundant, but just in case... */
1246  	if (r->entropy_count > r->poolinfo.poolwords) 
      		r->entropy_count = r->poolinfo.poolwords;
      
1249  	if (flags & EXTRACT_ENTROPY_SECONDARY)
      		xfer_secondary_pool(r, nbytes);
      
1252  	if (r->entropy_count / 8 >= nbytes)
      		r->entropy_count -= nbytes*8;
1254  	else
      		r->entropy_count = 0;
      
1257  	if (r->entropy_count < random_write_wakeup_thresh)
      		wake_up_interruptible(&random_write_wait);
      
      	r->extract_count += nbytes;
      	
      	ret = 0;
1263  	while (nbytes) {
      		/*
      		 * Check if we need to break out or reschedule....
      		 */
1267  		if ((flags & EXTRACT_ENTROPY_USER) && current->need_resched) {
1268  			if (signal_pending(current)) {
1269  				if (ret == 0)
      					ret = -ERESTARTSYS;
1271  				break;
      			}
      			schedule();
      		}
      
      		/* Hash the pool to get the output */
      		tmp[0] = 0x67452301;
      		tmp[1] = 0xefcdab89;
      		tmp[2] = 0x98badcfe;
      		tmp[3] = 0x10325476;
      #ifdef USE_SHA
      		tmp[4] = 0xc3d2e1f0;
      #endif
      		/*
      		 * As we hash the pool, we mix intermediate values of
      		 * the hash back into the pool.  This eliminates
      		 * backtracking attacks (where the attacker knows
      		 * the state of the pool plus the current outputs, and
      		 * attempts to find previous ouputs), unless the hash
      		 * function can be inverted.
      		 */
1292  		for (i = 0, x = 0; i < r->poolinfo.poolwords; i += 16, x+=2) {
      			HASH_TRANSFORM(tmp, r->pool+i);
      			add_entropy_words(r, &tmp[x%HASH_BUFFER_SIZE], 1);
      		}
      		
      		/*
      		 * In case the hash function has some recognizable
      		 * output pattern, we fold it in half.
      		 */
1301  		for (i = 0; i <  HASH_BUFFER_SIZE/2; i++)
      			tmp[i] ^= tmp[i + (HASH_BUFFER_SIZE+1)/2];
      #if HASH_BUFFER_SIZE & 1	/* There's a middle word to deal with */
      		x = tmp[HASH_BUFFER_SIZE/2];
      		x ^= (x >> 16);		/* Fold it in half */
      		((__u16 *)tmp)[HASH_BUFFER_SIZE-1] = (__u16)x;
      #endif
      		
      		/* Copy data to destination buffer */
      		i = MIN(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
1311  		if (flags & EXTRACT_ENTROPY_USER) {
      			i -= copy_to_user(buf, (__u8 const *)tmp, i);
1313  			if (!i) {
      				ret = -EFAULT;
1315  				break;
      			}
1317  		} else
      			memcpy(buf, (__u8 const *)tmp, i);
      		nbytes -= i;
      		buf += i;
      		ret += i;
      		add_timer_randomness(&extract_timer_state, nbytes);
      	}
      
      	/* Wipe data just returned from memory */
      	memset(tmp, 0, sizeof(tmp));
      	
1328  	return ret;
      }
      
      /*
       * This function is the exported kernel interface.  It returns some
       * number of good random numbers, suitable for seeding TCP sequence
       * numbers, etc.
       */
1336  void get_random_bytes(void *buf, int nbytes)
      {
1338  	if (sec_random_state)  
      		extract_entropy(sec_random_state, (char *) buf, nbytes, 
      				EXTRACT_ENTROPY_SECONDARY);
1341  	else if (random_state)
      		extract_entropy(random_state, (char *) buf, nbytes, 0);
1343  	else
      		printk(KERN_NOTICE "get_random_bytes called before "
      				   "random driver initialization\n");
      }
      
      /*********************************************************************
       *
       * Functions to interface with Linux
       *
       *********************************************************************/
      
      /*
       * Initialize the random pool with standard stuff.
       *
       * NOTE: This is an OS-dependent function.
       */
1359  static void init_std_data(struct entropy_store *r)
      {
      	struct timeval 	tv;
      	__u32		words[2];
      	char 		*p;
      	int		i;
      
      	do_gettimeofday(&tv);
      	words[0] = tv.tv_sec;
      	words[1] = tv.tv_usec;
      	add_entropy_words(r, words, 2);
      
      	/*
      	 *	This doesn't lock system.utsname. However, we are generating
      	 *	entropy so a race with a name set here is fine.
      	 */
      	p = (char *) &system_utsname;
1376  	for (i = sizeof(system_utsname) / sizeof(words); i; i--) {
      		memcpy(words, p, sizeof(words));
      		add_entropy_words(r, words, sizeof(words)/4);
      		p += sizeof(words);
      	}
      }
      
1383  void __init rand_initialize(void)
      {
      	int i;
      
1387  	if (create_entropy_store(DEFAULT_POOL_SIZE, &random_state))
1388  		return;		/* Error, return */
1389  	if (batch_entropy_init(BATCH_ENTROPY_SIZE, random_state))
1390  		return;		/* Error, return */
1391  	if (create_entropy_store(SECONDARY_POOL_SIZE, &sec_random_state))
1392  		return;		/* Error, return */
      	clear_entropy_store(random_state);
      	clear_entropy_store(sec_random_state);
      	init_std_data(random_state);
      #ifdef CONFIG_SYSCTL
      	sysctl_init_random(random_state);
      #endif
1399  	for (i = 0; i < NR_IRQS; i++)
      		irq_timer_state[i] = NULL;
1401  	for (i = 0; i < MAX_BLKDEV; i++)
      		blkdev_timer_state[i] = NULL;
      	memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
      	memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
      	memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
      	extract_timer_state.dont_count_entropy = 1;
      }
      
1409  void rand_initialize_irq(int irq)
      {
      	struct timer_rand_state *state;
      	
1413  	if (irq >= NR_IRQS || irq_timer_state[irq])
1414  		return;
      
      	/*
      	 * If kmalloc returns null, we just won't use that entropy
      	 * source.
      	 */
      	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1421  	if (state) {
      		memset(state, 0, sizeof(struct timer_rand_state));
      		irq_timer_state[irq] = state;
      	}
      }
      
1427  void rand_initialize_blkdev(int major, int mode)
      {
      	struct timer_rand_state *state;
      	
1431  	if (major >= MAX_BLKDEV || blkdev_timer_state[major])
1432  		return;
      
      	/*
      	 * If kmalloc returns null, we just won't use that entropy
      	 * source.
      	 */
      	state = kmalloc(sizeof(struct timer_rand_state), mode);
1439  	if (state) {
      		memset(state, 0, sizeof(struct timer_rand_state));
      		blkdev_timer_state[major] = state;
      	}
      }
      
      
      static ssize_t
1447  random_read(struct file * file, char * buf, size_t nbytes, loff_t *ppos)
      {
      	DECLARE_WAITQUEUE(wait, current);
      	ssize_t			n, retval = 0, count = 0;
      	
1452  	if (nbytes == 0)
1453  		return 0;
      
      	add_wait_queue(&random_read_wait, &wait);
1456  	while (nbytes > 0) {
1457  		set_current_state(TASK_INTERRUPTIBLE);
      		
      		n = nbytes;
1460  		if (n > SEC_XFER_SIZE)
      			n = SEC_XFER_SIZE;
1462  		if (n > random_state->entropy_count / 8)
      			n = random_state->entropy_count / 8;
1464  		if (n == 0) {
1465  			if (file->f_flags & O_NONBLOCK) {
      				retval = -EAGAIN;
1467  				break;
      			}
1469  			if (signal_pending(current)) {
      				retval = -ERESTARTSYS;
1471  				break;
      			}
      			schedule();
1474  			continue;
      		}
      		n = extract_entropy(sec_random_state, buf, n,
      				    EXTRACT_ENTROPY_USER |
      				    EXTRACT_ENTROPY_SECONDARY);
1479  		if (n < 0) {
      			retval = n;
1481  			break;
      		}
      		count += n;
      		buf += n;
      		nbytes -= n;
1486  		break;		/* This break makes the device work */
      				/* like a named pipe */
      	}
      	current->state = TASK_RUNNING;
      	remove_wait_queue(&random_read_wait, &wait);
      
      	/*
      	 * If we gave the user some bytes, update the access time.
      	 */
1495  	if (count != 0) {
      		UPDATE_ATIME(file->f_dentry->d_inode);
      	}
      	
1499  	return (count ? count : retval);
      }
      
      static ssize_t
1503  urandom_read(struct file * file, char * buf,
      		      size_t nbytes, loff_t *ppos)
      {
      	return extract_entropy(sec_random_state, buf, nbytes,
      			       EXTRACT_ENTROPY_USER |
1508  			       EXTRACT_ENTROPY_SECONDARY);
      }
      
      static unsigned int
1512  random_poll(struct file *file, poll_table * wait)
      {
      	unsigned int mask;
      
      	poll_wait(file, &random_read_wait, wait);
      	poll_wait(file, &random_write_wait, wait);
      	mask = 0;
1519  	if (random_state->entropy_count >= random_read_wakeup_thresh)
      		mask |= POLLIN | POLLRDNORM;
1521  	if (random_state->entropy_count < random_write_wakeup_thresh)
      		mask |= POLLOUT | POLLWRNORM;
1523  	return mask;
      }
      
      static ssize_t
1527  random_write(struct file * file, const char * buffer,
      	     size_t count, loff_t *ppos)
      {
      	int		ret = 0;
      	size_t		bytes;
      	__u32 		buf[16];
      	const char 	*p = buffer;
      	size_t		c = count;
      
1536  	while (c > 0) {
      		bytes = MIN(c, sizeof(buf));
      
      		bytes -= copy_from_user(&buf, p, bytes);
1540  		if (!bytes) {
      			ret = -EFAULT;
1542  			break;
      		}
      		c -= bytes;
      		p += bytes;
      
      		/* Convert bytes to words */
      		bytes = (bytes + 3) / sizeof(__u32);
      		add_entropy_words(random_state, buf, bytes);
      	}
1551  	if (p == buffer) {
1552  		return (ssize_t)ret;
1553  	} else {
      		file->f_dentry->d_inode->i_mtime = CURRENT_TIME;
      		mark_inode_dirty(file->f_dentry->d_inode);
1556  		return (ssize_t)(p - buffer);
      	}
      }
      
      static int
1561  random_ioctl(struct inode * inode, struct file * file,
      	     unsigned int cmd, unsigned long arg)
      {
      	int *p, size, ent_count;
      	int retval;
      	
1567  	switch (cmd) {
1568  	case RNDGETENTCNT:
      		ent_count = random_state->entropy_count;
1570  		if (put_user(ent_count, (int *) arg))
1571  			return -EFAULT;
1572  		return 0;
1573  	case RNDADDTOENTCNT:
1574  		if (!capable(CAP_SYS_ADMIN))
1575  			return -EPERM;
1576  		if (get_user(ent_count, (int *) arg))
1577  			return -EFAULT;
      		credit_entropy_store(random_state, ent_count);
      		/*
      		 * Wake up waiting processes if we have enough
      		 * entropy.
      		 */
1583  		if (random_state->entropy_count >= random_read_wakeup_thresh)
      			wake_up_interruptible(&random_read_wait);
1585  		return 0;
1586  	case RNDGETPOOL:
1587  		if (!capable(CAP_SYS_ADMIN))
1588  			return -EPERM;
      		p = (int *) arg;
      		ent_count = random_state->entropy_count;
1591  		if (put_user(ent_count, p++))
1592  			return -EFAULT;
      			
1594  		if (get_user(size, p))
1595  			return -EFAULT;
1596  		if (put_user(random_state->poolinfo.poolwords, p++))
1597  			return -EFAULT;
1598  		if (size < 0)
1599  			return -EINVAL;
1600  		if (size > random_state->poolinfo.poolwords)
      			size = random_state->poolinfo.poolwords;
1602  		if (copy_to_user(p, random_state->pool, size*sizeof(__u32)))
1603  			return -EFAULT;
1604  		return 0;
1605  	case RNDADDENTROPY:
1606  		if (!capable(CAP_SYS_ADMIN))
1607  			return -EPERM;
      		p = (int *) arg;
1609  		if (get_user(ent_count, p++))
1610  			return -EFAULT;
1611  		if (ent_count < 0)
1612  			return -EINVAL;
1613  		if (get_user(size, p++))
1614  			return -EFAULT;
      		retval = random_write(file, (const char *) p,
      				      size, &file->f_pos);
1617  		if (retval < 0)
1618  			return retval;
      		credit_entropy_store(random_state, ent_count);
      		/*
      		 * Wake up waiting processes if we have enough
      		 * entropy.
      		 */
1624  		if (random_state->entropy_count >= random_read_wakeup_thresh)
      			wake_up_interruptible(&random_read_wait);
1626  		return 0;
1627  	case RNDZAPENTCNT:
1628  		if (!capable(CAP_SYS_ADMIN))
1629  			return -EPERM;
      		random_state->entropy_count = 0;
1631  		return 0;
1632  	case RNDCLEARPOOL:
      		/* Clear the entropy pool and associated counters. */
1634  		if (!capable(CAP_SYS_ADMIN))
1635  			return -EPERM;
      		clear_entropy_store(random_state);
      		init_std_data(random_state);
1638  		return 0;
1639  	default:
1640  		return -EINVAL;
      	}
      }
      
      struct file_operations random_fops = {
      	read:		random_read,
      	write:		random_write,
      	poll:		random_poll,
      	ioctl:		random_ioctl,
      };
      
      struct file_operations urandom_fops = {
      	read:		urandom_read,
      	write:		random_write,
      	ioctl:		random_ioctl,
      };
      
      /***************************************************************
       * Random UUID interface
       * 
       * Used here for a Boot ID, but can be useful for other kernel 
       * drivers.
       ***************************************************************/
      
      /*
       * Generate random UUID
       */
1667  void generate_random_uuid(unsigned char uuid_out[16])
      {
      	get_random_bytes(uuid_out, 16);
      	/* Set UUID version to 4 --- truely random generation */
      	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
      	/* Set the UUID variant to DCE */
      	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
      }
      
      /********************************************************************
       *
       * Sysctl interface
       *
       ********************************************************************/
      
      #ifdef CONFIG_SYSCTL
      
      #include <linux/sysctl.h>
      
      static int sysctl_poolsize;
      static int min_read_thresh, max_read_thresh;
      static int min_write_thresh, max_write_thresh;
      static char sysctl_bootid[16];
      
      /*
       * This function handles a request from the user to change the pool size 
       * of the primary entropy store.
       */
1695  static int change_poolsize(int poolsize)
      {
      	struct entropy_store	*new_store, *old_store;
      	int			ret;
      	
1700  	if ((ret = create_entropy_store(poolsize, &new_store)))
1701  		return ret;
      
      	add_entropy_words(new_store, random_state->pool,
      			  random_state->poolinfo.poolwords);
      	credit_entropy_store(new_store, random_state->entropy_count);
      
      	sysctl_init_random(new_store);
      	old_store = random_state;
      	random_state = batch_tqueue.data = new_store;
      	free_entropy_store(old_store);
1711  	return 0;
      }
      
1714  static int proc_do_poolsize(ctl_table *table, int write, struct file *filp,
      			    void *buffer, size_t *lenp)
      {
      	int	ret;
      
      	sysctl_poolsize = random_state->poolinfo.poolwords * 4;
      
      	ret = proc_dointvec(table, write, filp, buffer, lenp);
      	if (ret || !write ||
1723  	    (sysctl_poolsize == random_state->poolinfo.poolwords * 4))
1724  		return ret;
      
1726  	return change_poolsize(sysctl_poolsize);
      }
      
1729  static int poolsize_strategy(ctl_table *table, int *name, int nlen,
      			     void *oldval, size_t *oldlenp,
      			     void *newval, size_t newlen, void **context)
      {
      	int	len;
      	
      	sysctl_poolsize = random_state->poolinfo.poolwords * 4;
      
      	/*
      	 * We only handle the write case, since the read case gets
      	 * handled by the default handler (and we don't care if the
      	 * write case happens twice; it's harmless).
      	 */
1742  	if (newval && newlen) {
      		len = newlen;
1744  		if (len > table->maxlen)
      			len = table->maxlen;
1746  		if (copy_from_user(table->data, newval, len))
1747  			return -EFAULT;
      	}
      
1750  	if (sysctl_poolsize != random_state->poolinfo.poolwords * 4)
1751  		return change_poolsize(sysctl_poolsize);
      
1753  	return 0;
      }
      
      /*
       * These functions is used to return both the bootid UUID, and random
       * UUID.  The difference is in whether table->data is NULL; if it is,
       * then a new UUID is generated and returned to the user.
       * 
       * If the user accesses this via the proc interface, it will be returned
       * as an ASCII string in the standard UUID format.  If accesses via the 
       * sysctl system call, it is returned as 16 bytes of binary data.
       */
1765  static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
      			void *buffer, size_t *lenp)
      {
      	ctl_table	fake_table;
      	unsigned char	buf[64], tmp_uuid[16], *uuid;
      
      	uuid = table->data;
1772  	if (!uuid) {
      		uuid = tmp_uuid;
      		uuid[8] = 0;
      	}
1776  	if (uuid[8] == 0)
      		generate_random_uuid(uuid);
      
      	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
      		"%02x%02x%02x%02x%02x%02x",
      		uuid[0],  uuid[1],  uuid[2],  uuid[3],
      		uuid[4],  uuid[5],  uuid[6],  uuid[7],
      		uuid[8],  uuid[9],  uuid[10], uuid[11],
      		uuid[12], uuid[13], uuid[14], uuid[15]);
      	fake_table.data = buf;
      	fake_table.maxlen = sizeof(buf);
      
1788  	return proc_dostring(&fake_table, write, filp, buffer, lenp);
      }
      
1791  static int uuid_strategy(ctl_table *table, int *name, int nlen,
      			 void *oldval, size_t *oldlenp,
      			 void *newval, size_t newlen, void **context)
      {
      	unsigned char	tmp_uuid[16], *uuid;
      	int	len;
      
1798  	if (!oldval || !oldlenp)
1799  		return 1;
      
      	uuid = table->data;
1802  	if (!uuid) {
      		uuid = tmp_uuid;
      		uuid[8] = 0;
      	}
1806  	if (uuid[8] == 0)
      		generate_random_uuid(uuid);
      
      	get_user(len, oldlenp);
1810  	if (len) {
1811  		if (len > 16)
      			len = 16;
1813  		if (copy_to_user(oldval, table->data, len))
1814  			return -EFAULT;
1815  		if (put_user(len, oldlenp))
1816  			return -EFAULT;
      	}
1818  	return 1;
      }
      
      ctl_table random_table[] = {
      	{RANDOM_POOLSIZE, "poolsize",
      	 &sysctl_poolsize, sizeof(int), 0644, NULL,
      	 &proc_do_poolsize, &poolsize_strategy},
      	{RANDOM_ENTROPY_COUNT, "entropy_avail",
      	 NULL, sizeof(int), 0444, NULL,
      	 &proc_dointvec},
      	{RANDOM_READ_THRESH, "read_wakeup_threshold",
      	 &random_read_wakeup_thresh, sizeof(int), 0644, NULL,
      	 &proc_dointvec_minmax, &sysctl_intvec, 0,
      	 &min_read_thresh, &max_read_thresh},
      	{RANDOM_WRITE_THRESH, "write_wakeup_threshold",
      	 &random_write_wakeup_thresh, sizeof(int), 0644, NULL,
      	 &proc_dointvec_minmax, &sysctl_intvec, 0,
      	 &min_write_thresh, &max_write_thresh},
      	{RANDOM_BOOT_ID, "boot_id",
      	 &sysctl_bootid, 16, 0444, NULL,
      	 &proc_do_uuid, &uuid_strategy},
      	{RANDOM_UUID, "uuid",
      	 NULL, 16, 0444, NULL,
      	 &proc_do_uuid, &uuid_strategy},
      	{0}
      };
      
1845  static void sysctl_init_random(struct entropy_store *random_state)
      {
      	min_read_thresh = 8;
      	min_write_thresh = 0;
      	max_read_thresh = max_write_thresh =
      		random_state->poolinfo.poolwords * 32;
      	random_table[1].data = &random_state->entropy_count;
      }
      #endif 	/* CONFIG_SYSCTL */
      
      /********************************************************************
       *
       * Random funtions for networking
       *
       ********************************************************************/
      
      /*
       * TCP initial sequence number picking.  This uses the random number
       * generator to pick an initial secret value.  This value is hashed
       * along with the TCP endpoint information to provide a unique
       * starting point for each pair of TCP endpoints.  This defeats
       * attacks which rely on guessing the initial TCP sequence number.
       * This algorithm was suggested by Steve Bellovin.
       *
       * Using a very strong hash was taking an appreciable amount of the total
       * TCP connection establishment time, so this is a weaker hash,
       * compensated for by changing the secret periodically.
       */
      
      /* F, G and H are basic MD4 functions: selection, majority, parity */
      #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
      #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
      #define H(x, y, z) ((x) ^ (y) ^ (z))
      
      /*
       * The generic round function.  The application is so specific that
       * we don't bother protecting all the arguments with parens, as is generally
       * good macro practice, in favor of extra legibility.
       * Rotation is separate from addition to prevent recomputation
       */
      #define ROUND(f, a, b, c, d, x, s)	\
      	(a += f(b, c, d) + x, a = (a << s) | (a >> (32-s)))
      #define K1 0
      #define K2 013240474631UL
      #define K3 015666365641UL
      
      /*
       * Basic cut-down MD4 transform.  Returns only 32 bits of result.
       */
1894  static __u32 halfMD4Transform (__u32 const buf[4], __u32 const in[8])
      {
      	__u32	a = buf[0], b = buf[1], c = buf[2], d = buf[3];
      
      	/* Round 1 */
      	ROUND(F, a, b, c, d, in[0] + K1,  3);
      	ROUND(F, d, a, b, c, in[1] + K1,  7);
      	ROUND(F, c, d, a, b, in[2] + K1, 11);
      	ROUND(F, b, c, d, a, in[3] + K1, 19);
      	ROUND(F, a, b, c, d, in[4] + K1,  3);
      	ROUND(F, d, a, b, c, in[5] + K1,  7);
      	ROUND(F, c, d, a, b, in[6] + K1, 11);
      	ROUND(F, b, c, d, a, in[7] + K1, 19);
      
      	/* Round 2 */
      	ROUND(G, a, b, c, d, in[1] + K2,  3);
      	ROUND(G, d, a, b, c, in[3] + K2,  5);
      	ROUND(G, c, d, a, b, in[5] + K2,  9);
      	ROUND(G, b, c, d, a, in[7] + K2, 13);
      	ROUND(G, a, b, c, d, in[0] + K2,  3);
      	ROUND(G, d, a, b, c, in[2] + K2,  5);
      	ROUND(G, c, d, a, b, in[4] + K2,  9);
      	ROUND(G, b, c, d, a, in[6] + K2, 13);
      
      	/* Round 3 */
      	ROUND(H, a, b, c, d, in[3] + K3,  3);
      	ROUND(H, d, a, b, c, in[7] + K3,  9);
      	ROUND(H, c, d, a, b, in[2] + K3, 11);
      	ROUND(H, b, c, d, a, in[6] + K3, 15);
      	ROUND(H, a, b, c, d, in[1] + K3,  3);
      	ROUND(H, d, a, b, c, in[5] + K3,  9);
      	ROUND(H, c, d, a, b, in[0] + K3, 11);
      	ROUND(H, b, c, d, a, in[4] + K3, 15);
      
1928  	return buf[1] + b;	/* "most hashed" word */
      	/* Alternative: return sum of all words? */
      }
      
      #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
      
      static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
      {
      	__u32	a = buf[0], b = buf[1], c = buf[2], d = buf[3];
      
      	/* Round 1 */
      	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
      	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
      	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
      	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
      	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
      	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
      	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
      	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
      	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
      	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
      	ROUND(F, c, d, a, b, in[10] + K1, 11);
      	ROUND(F, b, c, d, a, in[11] + K1, 19);
      
      	/* Round 2 */
      	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
      	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
      	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
      	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
      	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
      	ROUND(G, d, a, b, c, in[11] + K2,  5);
      	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
      	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
      	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
      	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
      	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
      	ROUND(G, b, c, d, a, in[10] + K2, 13);
      
      	/* Round 3 */
      	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
      	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
      	ROUND(H, c, d, a, b, in[11] + K3, 11);
      	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
      	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
      	ROUND(H, d, a, b, c, in[10] + K3,  9);
      	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
      	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
      	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
      	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
      	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
      	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
      
      	return buf[1] + b;	/* "most hashed" word */
      	/* Alternative: return sum of all words? */
      }
      #endif
      
      #undef ROUND
      #undef F
      #undef G
      #undef H
      #undef K1
      #undef K2
      #undef K3
      
      /* This should not be decreased so low that ISNs wrap too fast. */
      #define REKEY_INTERVAL	300
      #define HASH_BITS 24
      
      #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
      __u32 secure_tcpv6_sequence_number(__u32 *saddr, __u32 *daddr,
      				   __u16 sport, __u16 dport)
      {
      	static __u32	rekey_time;
      	static __u32	count;
      	static __u32	secret[12];
      	struct timeval 	tv;
      	__u32		seq;
      
      	/* The procedure is the same as for IPv4, but addresses are longer. */
      
      	do_gettimeofday(&tv);	/* We need the usecs below... */
      
      	if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
      		rekey_time = tv.tv_sec;
      		/* First five words are overwritten below. */
      		get_random_bytes(&secret[5], sizeof(secret)-5*4);
      		count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
      	}
      
      	memcpy(secret, saddr, 16);
      	secret[4]=(sport << 16) + dport;
      
      	seq = (twothirdsMD4Transform(daddr, secret) &
      	       ((1<<HASH_BITS)-1)) + count;
      
      	seq += tv.tv_usec + tv.tv_sec*1000000;
      	return seq;
      }
      
      __u32 secure_ipv6_id(__u32 *daddr)
      {
      	static time_t	rekey_time;
      	static __u32	secret[12];
      	time_t		t;
      
      	/*
      	 * Pick a random secret every REKEY_INTERVAL seconds.
      	 */
      	t = CURRENT_TIME;
      	if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
      		rekey_time = t;
      		/* First word is overwritten below. */
      		get_random_bytes(secret, sizeof(secret));
      	}
      
      	return twothirdsMD4Transform(daddr, secret);
      }
      
      #endif
      
      
2050  __u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
      				 __u16 sport, __u16 dport)
      {
      	static __u32	rekey_time;
      	static __u32	count;
      	static __u32	secret[12];
      	struct timeval 	tv;
      	__u32		seq;
      
      	/*
      	 * Pick a random secret every REKEY_INTERVAL seconds.
      	 */
      	do_gettimeofday(&tv);	/* We need the usecs below... */
      
2064  	if (!rekey_time || (tv.tv_sec - rekey_time) > REKEY_INTERVAL) {
      		rekey_time = tv.tv_sec;
      		/* First three words are overwritten below. */
      		get_random_bytes(&secret[3], sizeof(secret)-12);
      		count = (tv.tv_sec/REKEY_INTERVAL) << HASH_BITS;
      	}
      
      	/*
      	 *  Pick a unique starting offset for each TCP connection endpoints
      	 *  (saddr, daddr, sport, dport).
      	 *  Note that the words are placed into the first words to be
      	 *  mixed in with the halfMD4.  This is because the starting
      	 *  vector is also a random secret (at secret+8), and further
      	 *  hashing fixed data into it isn't going to improve anything,
      	 *  so we should get started with the variable data.
      	 */
      	secret[0]=saddr;
      	secret[1]=daddr;
      	secret[2]=(sport << 16) + dport;
      
      	seq = (halfMD4Transform(secret+8, secret) &
      	       ((1<<HASH_BITS)-1)) + count;
      
      	/*
      	 *	As close as possible to RFC 793, which
      	 *	suggests using a 250 kHz clock.
      	 *	Further reading shows this assumes 2 Mb/s networks.
      	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
      	 *	That's funny, Linux has one built in!  Use it!
      	 *	(Networks are faster now - should this be increased?)
      	 */
      	seq += tv.tv_usec + tv.tv_sec*1000000;
      #if 0
      	printk("init_seq(%lx, %lx, %d, %d) = %d\n",
      	       saddr, daddr, sport, dport, seq);
      #endif
2100  	return seq;
      }
      
      /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
       *  All blames to Andrey V. Savochkin <saw@msu.ru>.
       */
2106  __u32 secure_ip_id(__u32 daddr)
      {
      	static time_t	rekey_time;
      	static __u32	secret[12];
      	time_t		t;
      
      	/*
      	 * Pick a random secret every REKEY_INTERVAL seconds.
      	 */
      	t = CURRENT_TIME;
2116  	if (!rekey_time || (t - rekey_time) > REKEY_INTERVAL) {
      		rekey_time = t;
      		/* First word is overwritten below. */
      		get_random_bytes(secret+1, sizeof(secret)-4);
      	}
      
      	/*
      	 *  Pick a unique starting offset for each IP destination.
      	 *  Note that the words are placed into the first words to be
      	 *  mixed in with the halfMD4.  This is because the starting
      	 *  vector is also a random secret (at secret+8), and further
      	 *  hashing fixed data into it isn't going to improve anything,
      	 *  so we should get started with the variable data.
      	 */
      	secret[0]=daddr;
      
2132  	return halfMD4Transform(secret+8, secret);
      }
      
      #ifdef CONFIG_SYN_COOKIES
      /*
       * Secure SYN cookie computation. This is the algorithm worked out by
       * Dan Bernstein and Eric Schenk.
       *
       * For linux I implement the 1 minute counter by looking at the jiffies clock.
       * The count is passed in as a parameter, so this code doesn't much care.
       */
      
      #define COOKIEBITS 24	/* Upper bits store count */
      #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
      
      static int	syncookie_init;
      static __u32	syncookie_secret[2][16-3+HASH_BUFFER_SIZE];
      
      __u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
      		__u16 dport, __u32 sseq, __u32 count, __u32 data)
      {
      	__u32 	tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
      	__u32	seq;
      
      	/*
      	 * Pick two random secrets the first time we need a cookie.
      	 */
      	if (syncookie_init == 0) {
      		get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
      		syncookie_init = 1;
      	}
      
      	/*
      	 * Compute the secure sequence number.
      	 * The output should be:
         	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
      	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
      	 * Where sseq is their sequence number and count increases every
      	 * minute by 1.
      	 * As an extra hack, we add a small "data" value that encodes the
      	 * MSS into the second hash value.
      	 */
      
      	memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
      	tmp[0]=saddr;
      	tmp[1]=daddr;
      	tmp[2]=(sport << 16) + dport;
      	HASH_TRANSFORM(tmp+16, tmp);
      	seq = tmp[17] + sseq + (count << COOKIEBITS);
      
      	memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
      	tmp[0]=saddr;
      	tmp[1]=daddr;
      	tmp[2]=(sport << 16) + dport;
      	tmp[3] = count;	/* minute counter */
      	HASH_TRANSFORM(tmp+16, tmp);
      
      	/* Add in the second hash and the data */
      	return seq + ((tmp[17] + data) & COOKIEMASK);
      }
      
      /*
       * This retrieves the small "data" value from the syncookie.
       * If the syncookie is bad, the data returned will be out of
       * range.  This must be checked by the caller.
       *
       * The count value used to generate the cookie must be within
       * "maxdiff" if the current (passed-in) "count".  The return value
       * is (__u32)-1 if this test fails.
       */
      __u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
      		__u16 dport, __u32 sseq, __u32 count, __u32 maxdiff)
      {
      	__u32 	tmp[16 + HASH_BUFFER_SIZE + HASH_EXTRA_SIZE];
      	__u32	diff;
      
      	if (syncookie_init == 0)
      		return (__u32)-1;	/* Well, duh! */
      
      	/* Strip away the layers from the cookie */
      	memcpy(tmp+3, syncookie_secret[0], sizeof(syncookie_secret[0]));
      	tmp[0]=saddr;
      	tmp[1]=daddr;
      	tmp[2]=(sport << 16) + dport;
      	HASH_TRANSFORM(tmp+16, tmp);
      	cookie -= tmp[17] + sseq;
      	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
      
      	diff = (count - (cookie >> COOKIEBITS)) & ((__u32)-1 >> COOKIEBITS);
      	if (diff >= maxdiff)
      		return (__u32)-1;
      
      	memcpy(tmp+3, syncookie_secret[1], sizeof(syncookie_secret[1]));
      	tmp[0] = saddr;
      	tmp[1] = daddr;
      	tmp[2] = (sport << 16) + dport;
      	tmp[3] = count - diff;	/* minute counter */
      	HASH_TRANSFORM(tmp+16, tmp);
      
      	return (cookie - tmp[17]) & COOKIEMASK;	/* Leaving the data behind */
      }
      #endif
      
      
      
      EXPORT_SYMBOL(add_keyboard_randomness);
      EXPORT_SYMBOL(add_mouse_randomness);
      EXPORT_SYMBOL(add_interrupt_randomness);
      EXPORT_SYMBOL(add_blkdev_randomness);
      EXPORT_SYMBOL(batch_entropy_store);