/*
       *  linux/kernel/sched.c
       *
       *  Kernel scheduler and related syscalls
       *
       *  Copyright (C) 1991, 1992  Linus Torvalds
       *
       *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
       *              make semaphores SMP safe
       *  1998-11-19	Implemented schedule_timeout() and related stuff
       *		by Andrea Arcangeli
       *  1998-12-28  Implemented better SMP scheduling by Ingo Molnar
       */
      
      /*
       * 'sched.c' is the main kernel file. It contains scheduling primitives
       * (sleep_on, wakeup, schedule etc) as well as a number of simple system
       * call functions (type getpid()), which just extract a field from
       * current-task
       */
      
      #include <linux/config.h>
      #include <linux/mm.h>
      #include <linux/init.h>
      #include <linux/smp_lock.h>
      #include <linux/interrupt.h>
      #include <linux/kernel_stat.h>
      
      #include <asm/uaccess.h>
      #include <asm/mmu_context.h>
      
      extern void timer_bh(void);
      extern void tqueue_bh(void);
      extern void immediate_bh(void);
      
      /*
       * scheduler variables
       */
      
      unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
      
      extern void mem_use(void);
      
      /*
       * Scheduling quanta.
       *
       * NOTE! The unix "nice" value influences how long a process
       * gets. The nice value ranges from -20 to +19, where a -20
       * is a "high-priority" task, and a "+10" is a low-priority
       * task.
       *
       * We want the time-slice to be around 50ms or so, so this
       * calculation depends on the value of HZ.
       */
      #if HZ < 200
      #define TICK_SCALE(x)	((x) >> 2)
      #elif HZ < 400
      #define TICK_SCALE(x)	((x) >> 1)
      #elif HZ < 800
      #define TICK_SCALE(x)	(x)
      #elif HZ < 1600
      #define TICK_SCALE(x)	((x) << 1)
      #else
      #define TICK_SCALE(x)	((x) << 2)
      #endif
      
      #define NICE_TO_TICKS(nice)	(TICK_SCALE(20-(nice))+1)
      
      
      /*
       *	Init task must be ok at boot for the ix86 as we will check its signals
       *	via the SMP irq return path.
       */
       
      struct task_struct * init_tasks[NR_CPUS] = {&init_task, };
      
      /*
       * The tasklist_lock protects the linked list of processes.
       *
       * The runqueue_lock locks the parts that actually access
       * and change the run-queues, and have to be interrupt-safe.
       *
       * If both locks are to be concurrently held, the runqueue_lock
       * nests inside the tasklist_lock.
       */
      spinlock_t runqueue_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED;  /* inner */
      rwlock_t tasklist_lock __cacheline_aligned = RW_LOCK_UNLOCKED;	/* outer */
      
      static LIST_HEAD(runqueue_head);
      
      /*
       * We align per-CPU scheduling data on cacheline boundaries,
       * to prevent cacheline ping-pong.
       */
      static union {
      	struct schedule_data {
      		struct task_struct * curr;
      		cycles_t last_schedule;
      	} schedule_data;
      	char __pad [SMP_CACHE_BYTES];
      } aligned_data [NR_CPUS] __cacheline_aligned = { {{&init_task,0}}};
      
      #define cpu_curr(cpu) aligned_data[(cpu)].schedule_data.curr
      #define last_schedule(cpu) aligned_data[(cpu)].schedule_data.last_schedule
      
      struct kernel_stat kstat;
      
      #ifdef CONFIG_SMP
      
      #define idle_task(cpu) (init_tasks[cpu_number_map(cpu)])
      #define can_schedule(p,cpu) ((!(p)->has_cpu) && \
      				((p)->cpus_allowed & (1 << cpu)))
      
      #else
      
      #define idle_task(cpu) (&init_task)
      #define can_schedule(p,cpu) (1)
      
      #endif
      
 121  void scheduling_functions_start_here(void) { }
      
      /*
       * This is the function that decides how desirable a process is..
       * You can weigh different processes against each other depending
       * on what CPU they've run on lately etc to try to handle cache
       * and TLB miss penalties.
       *
       * Return values:
       *	 -1000: never select this
       *	     0: out of time, recalculate counters (but it might still be
       *		selected)
       *	   +ve: "goodness" value (the larger, the better)
       *	 +1000: realtime process, select this.
       */
      
 137  static inline int goodness(struct task_struct * p, int this_cpu, struct mm_struct *this_mm)
      {
      	int weight;
      
      	/*
      	 * select the current process after every other
      	 * runnable process, but before the idle thread.
      	 * Also, dont trigger a counter recalculation.
      	 */
      	weight = -1;
 147  	if (p->policy & SCHED_YIELD)
 148  		goto out;
      
      	/*
      	 * Non-RT process - normal case first.
      	 */
 153  	if (p->policy == SCHED_OTHER) {
      		/*
      		 * Give the process a first-approximation goodness value
      		 * according to the number of clock-ticks it has left.
      		 *
      		 * Don't do any other calculations if the time slice is
      		 * over..
      		 */
      		weight = p->counter;
 162  		if (!weight)
 163  			goto out;
      			
      #ifdef CONFIG_SMP
      		/* Give a largish advantage to the same processor...   */
      		/* (this is equivalent to penalizing other processors) */
      		if (p->processor == this_cpu)
      			weight += PROC_CHANGE_PENALTY;
      #endif
      
      		/* .. and a slight advantage to the current MM */
 173  		if (p->mm == this_mm || !p->mm)
      			weight += 1;
      		weight += 20 - p->nice;
 176  		goto out;
      	}
      
      	/*
      	 * Realtime process, select the first one on the
      	 * runqueue (taking priorities within processes
      	 * into account).
      	 */
      	weight = 1000 + p->rt_priority;
      out:
 186  	return weight;
      }
      
      /*
       * the 'goodness value' of replacing a process on a given CPU.
       * positive value means 'replace', zero or negative means 'dont'.
       */
 193  static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
      {
 195  	return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
      }
      
      /*
       * This is ugly, but reschedule_idle() is very timing-critical.
       * We are called with the runqueue spinlock held and we must
       * not claim the tasklist_lock.
       */
      static FASTCALL(void reschedule_idle(struct task_struct * p));
      
 205  static void reschedule_idle(struct task_struct * p)
      {
      #ifdef CONFIG_SMP
      	int this_cpu = smp_processor_id();
      	struct task_struct *tsk, *target_tsk;
      	int cpu, best_cpu, i, max_prio;
      	cycles_t oldest_idle;
      
      	/*
      	 * shortcut if the woken up task's last CPU is
      	 * idle now.
      	 */
      	best_cpu = p->processor;
      	if (can_schedule(p, best_cpu)) {
      		tsk = idle_task(best_cpu);
      		if (cpu_curr(best_cpu) == tsk) {
      			int need_resched;
      send_now_idle:
      			/*
      			 * If need_resched == -1 then we can skip sending
      			 * the IPI altogether, tsk->need_resched is
      			 * actively watched by the idle thread.
      			 */
      			need_resched = tsk->need_resched;
      			tsk->need_resched = 1;
      			if ((best_cpu != this_cpu) && !need_resched)
      				smp_send_reschedule(best_cpu);
      			return;
      		}
      	}
      
      	/*
      	 * We know that the preferred CPU has a cache-affine current
      	 * process, lets try to find a new idle CPU for the woken-up
      	 * process. Select the least recently active idle CPU. (that
      	 * one will have the least active cache context.) Also find
      	 * the executing process which has the least priority.
      	 */
      	oldest_idle = (cycles_t) -1;
      	target_tsk = NULL;
      	max_prio = 1;
      
      	for (i = 0; i < smp_num_cpus; i++) {
      		cpu = cpu_logical_map(i);
      		if (!can_schedule(p, cpu))
      			continue;
      		tsk = cpu_curr(cpu);
      		/*
      		 * We use the first available idle CPU. This creates
      		 * a priority list between idle CPUs, but this is not
      		 * a problem.
      		 */
      		if (tsk == idle_task(cpu)) {
      			if (last_schedule(cpu) < oldest_idle) {
      				oldest_idle = last_schedule(cpu);
      				target_tsk = tsk;
      			}
      		} else {
      			if (oldest_idle == -1ULL) {
      				int prio = preemption_goodness(tsk, p, cpu);
      
      				if (prio > max_prio) {
      					max_prio = prio;
      					target_tsk = tsk;
      				}
      			}
      		}
      	}
      	tsk = target_tsk;
      	if (tsk) {
      		if (oldest_idle != -1ULL) {
      			best_cpu = tsk->processor;
      			goto send_now_idle;
      		}
      		tsk->need_resched = 1;
      		if (tsk->processor != this_cpu)
      			smp_send_reschedule(tsk->processor);
      	}
      	return;
      		
      
      #else /* UP */
      	int this_cpu = smp_processor_id();
      	struct task_struct *tsk;
      
      	tsk = cpu_curr(this_cpu);
 291  	if (preemption_goodness(tsk, p, this_cpu) > 1)
      		tsk->need_resched = 1;
      #endif
      }
      
      /*
       * Careful!
       *
       * This has to add the process to the _beginning_ of the
       * run-queue, not the end. See the comment about "This is
       * subtle" in the scheduler proper..
       */
 303  static inline void add_to_runqueue(struct task_struct * p)
      {
      	list_add(&p->run_list, &runqueue_head);
      	nr_running++;
      }
      
 309  static inline void move_last_runqueue(struct task_struct * p)
      {
      	list_del(&p->run_list);
      	list_add_tail(&p->run_list, &runqueue_head);
      }
      
 315  static inline void move_first_runqueue(struct task_struct * p)
      {
      	list_del(&p->run_list);
      	list_add(&p->run_list, &runqueue_head);
      }
      
      /*
       * Wake up a process. Put it on the run-queue if it's not
       * already there.  The "current" process is always on the
       * run-queue (except when the actual re-schedule is in
       * progress), and as such you're allowed to do the simpler
       * "current->state = TASK_RUNNING" to mark yourself runnable
       * without the overhead of this.
       */
 329  inline void wake_up_process(struct task_struct * p)
      {
      	unsigned long flags;
      
      	/*
      	 * We want the common case fall through straight, thus the goto.
      	 */
 336  	spin_lock_irqsave(&runqueue_lock, flags);
      	p->state = TASK_RUNNING;
 338  	if (task_on_runqueue(p))
 339  		goto out;
      	add_to_runqueue(p);
      	reschedule_idle(p);
      out:
 343  	spin_unlock_irqrestore(&runqueue_lock, flags);
      }
      
 346  static inline void wake_up_process_synchronous(struct task_struct * p)
      {
      	unsigned long flags;
      
      	/*
      	 * We want the common case fall through straight, thus the goto.
      	 */
 353  	spin_lock_irqsave(&runqueue_lock, flags);
      	p->state = TASK_RUNNING;
 355  	if (task_on_runqueue(p))
 356  		goto out;
      	add_to_runqueue(p);
      out:
 359  	spin_unlock_irqrestore(&runqueue_lock, flags);
      }
      
 362  static void process_timeout(unsigned long __data)
      {
      	struct task_struct * p = (struct task_struct *) __data;
      
      	wake_up_process(p);
      }
      
 369  signed long schedule_timeout(signed long timeout)
      {
      	struct timer_list timer;
      	unsigned long expire;
      
 374  	switch (timeout)
      	{
 376  	case MAX_SCHEDULE_TIMEOUT:
      		/*
      		 * These two special cases are useful to be comfortable
      		 * in the caller. Nothing more. We could take
      		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
      		 * but I' d like to return a valid offset (>=0) to allow
      		 * the caller to do everything it want with the retval.
      		 */
      		schedule();
 385  		goto out;
 386  	default:
      		/*
      		 * Another bit of PARANOID. Note that the retval will be
      		 * 0 since no piece of kernel is supposed to do a check
      		 * for a negative retval of schedule_timeout() (since it
      		 * should never happens anyway). You just have the printk()
      		 * that will tell you if something is gone wrong and where.
      		 */
 394  		if (timeout < 0)
      		{
      			printk(KERN_ERR "schedule_timeout: wrong timeout "
      			       "value %lx from %p\n", timeout,
      			       __builtin_return_address(0));
      			current->state = TASK_RUNNING;
 400  			goto out;
      		}
      	}
      
      	expire = timeout + jiffies;
      
      	init_timer(&timer);
      	timer.expires = expire;
      	timer.data = (unsigned long) current;
      	timer.function = process_timeout;
      
      	add_timer(&timer);
      	schedule();
      	del_timer_sync(&timer);
      
      	timeout = expire - jiffies;
      
       out:
 418  	return timeout < 0 ? 0 : timeout;
      }
      
      /*
       * schedule_tail() is getting called from the fork return path. This
       * cleans up all remaining scheduler things, without impacting the
       * common case.
       */
 426  static inline void __schedule_tail(struct task_struct *prev)
      {
      #ifdef CONFIG_SMP
      	int policy;
      
      	/*
      	 * prev->policy can be written from here only before `prev'
      	 * can be scheduled (before setting prev->has_cpu to zero).
      	 * Of course it must also be read before allowing prev
      	 * to be rescheduled, but since the write depends on the read
      	 * to complete, wmb() is enough. (the spin_lock() acquired
      	 * before setting has_cpu is not enough because the spin_lock()
      	 * common code semantics allows code outside the critical section
      	 * to enter inside the critical section)
      	 */
      	policy = prev->policy;
      	prev->policy = policy & ~SCHED_YIELD;
      	wmb();
      
      	/*
      	 * fast path falls through. We have to clear has_cpu before
      	 * checking prev->state to avoid a wakeup race - thus we
      	 * also have to protect against the task exiting early.
      	 */
      	task_lock(prev);
      	prev->has_cpu = 0;
      	mb();
      	if (prev->state == TASK_RUNNING)
      		goto needs_resched;
      
      out_unlock:
      	task_unlock(prev);	/* Synchronise here with release_task() if prev is TASK_ZOMBIE */
      	return;
      
      	/*
      	 * Slow path - we 'push' the previous process and
      	 * reschedule_idle() will attempt to find a new
      	 * processor for it. (but it might preempt the
      	 * current process as well.) We must take the runqueue
      	 * lock and re-check prev->state to be correct. It might
      	 * still happen that this process has a preemption
      	 * 'in progress' already - but this is not a problem and
      	 * might happen in other circumstances as well.
      	 */
      needs_resched:
      	{
      		unsigned long flags;
      
      		/*
      		 * Avoid taking the runqueue lock in cases where
      		 * no preemption-check is necessery:
      		 */
      		if ((prev == idle_task(smp_processor_id())) ||
      						(policy & SCHED_YIELD))
      			goto out_unlock;
      
      		spin_lock_irqsave(&runqueue_lock, flags);
      		if (prev->state == TASK_RUNNING)
      			reschedule_idle(prev);
      		spin_unlock_irqrestore(&runqueue_lock, flags);
      		goto out_unlock;
      	}
      #else
      	prev->policy &= ~SCHED_YIELD;
      #endif /* CONFIG_SMP */
      }
      
 493  void schedule_tail(struct task_struct *prev)
      {
      	__schedule_tail(prev);
      }
      
      /*
       *  'schedule()' is the scheduler function. It's a very simple and nice
       * scheduler: it's not perfect, but certainly works for most things.
       *
       * The goto is "interesting".
       *
       *   NOTE!!  Task 0 is the 'idle' task, which gets called when no other
       * tasks can run. It can not be killed, and it cannot sleep. The 'state'
       * information in task[0] is never used.
       */
 508  asmlinkage void schedule(void)
      {
      	struct schedule_data * sched_data;
      	struct task_struct *prev, *next, *p;
      	struct list_head *tmp;
      	int this_cpu, c;
      
 515  	if (!current->active_mm) BUG();
      need_resched_back:
      	prev = current;
      	this_cpu = prev->processor;
      
 520  	if (in_interrupt())
 521  		goto scheduling_in_interrupt;
      
 523  	release_kernel_lock(prev, this_cpu);
      
      	/* Do "administrative" work here while we don't hold any locks */
 526  	if (softirq_active(this_cpu) & softirq_mask(this_cpu))
 527  		goto handle_softirq;
      handle_softirq_back:
      
      	/*
      	 * 'sched_data' is protected by the fact that we can run
      	 * only one process per CPU.
      	 */
      	sched_data = & aligned_data[this_cpu].schedule_data;
      
 536  	spin_lock_irq(&runqueue_lock);
      
      	/* move an exhausted RR process to be last.. */
 539  	if (prev->policy == SCHED_RR)
 540  		goto move_rr_last;
      move_rr_back:
      
 543  	switch (prev->state) {
 544  		case TASK_INTERRUPTIBLE:
 545  			if (signal_pending(prev)) {
      				prev->state = TASK_RUNNING;
 547  				break;
      			}
 549  		default:
      			del_from_runqueue(prev);
 551  		case TASK_RUNNING:
      	}
      	prev->need_resched = 0;
      
      	/*
      	 * this is the scheduler proper:
      	 */
      
      repeat_schedule:
      	/*
      	 * Default process to select..
      	 */
      	next = idle_task(this_cpu);
      	c = -1000;
 565  	if (prev->state == TASK_RUNNING)
 566  		goto still_running;
      
      still_running_back:
 569  	list_for_each(tmp, &runqueue_head) {
      		p = list_entry(tmp, struct task_struct, run_list);
 571  		if (can_schedule(p, this_cpu)) {
      			int weight = goodness(p, this_cpu, prev->active_mm);
 573  			if (weight > c)
      				c = weight, next = p;
      		}
      	}
      
      	/* Do we need to re-calculate counters? */
 579  	if (!c)
 580  		goto recalculate;
      	/*
      	 * from this point on nothing can prevent us from
      	 * switching to the next task, save this fact in
      	 * sched_data.
      	 */
      	sched_data->curr = next;
      #ifdef CONFIG_SMP
       	next->has_cpu = 1;
      	next->processor = this_cpu;
      #endif
 591  	spin_unlock_irq(&runqueue_lock);
      
 593  	if (prev == next)
 594  		goto same_process;
      
      #ifdef CONFIG_SMP
       	/*
       	 * maintain the per-process 'last schedule' value.
       	 * (this has to be recalculated even if we reschedule to
       	 * the same process) Currently this is only used on SMP,
      	 * and it's approximate, so we do not have to maintain
      	 * it while holding the runqueue spinlock.
       	 */
       	sched_data->last_schedule = get_cycles();
      
      	/*
      	 * We drop the scheduler lock early (it's a global spinlock),
      	 * thus we have to lock the previous process from getting
      	 * rescheduled during switch_to().
      	 */
      
      #endif /* CONFIG_SMP */
      
      	kstat.context_swtch++;
      	/*
      	 * there are 3 processes which are affected by a context switch:
      	 *
      	 * prev == .... ==> (last => next)
      	 *
      	 * It's the 'much more previous' 'prev' that is on next's stack,
      	 * but prev is set to (the just run) 'last' process by switch_to().
      	 * This might sound slightly confusing but makes tons of sense.
      	 */
 624  	prepare_to_switch();
      	{
      		struct mm_struct *mm = next->mm;
      		struct mm_struct *oldmm = prev->active_mm;
 628  		if (!mm) {
 629  			if (next->active_mm) BUG();
      			next->active_mm = oldmm;
      			atomic_inc(&oldmm->mm_count);
      			enter_lazy_tlb(oldmm, next, this_cpu);
 633  		} else {
 634  			if (next->active_mm != mm) BUG();
      			switch_mm(oldmm, mm, next, this_cpu);
      		}
      
 638  		if (!prev->mm) {
      			prev->active_mm = NULL;
      			mmdrop(oldmm);
      		}
      	}
      
      	/*
      	 * This just switches the register state and the
      	 * stack.
      	 */
 648  	switch_to(prev, next, prev);
      	__schedule_tail(prev);
      
      same_process:
 652  	reacquire_kernel_lock(current);
 653  	if (current->need_resched)
 654  		goto need_resched_back;
      
 656  	return;
      
      recalculate:
      	{
      		struct task_struct *p;
 661  		spin_unlock_irq(&runqueue_lock);
      		read_lock(&tasklist_lock);
 663  		for_each_task(p)
      			p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
 665  		read_unlock(&tasklist_lock);
 666  		spin_lock_irq(&runqueue_lock);
      	}
 668  	goto repeat_schedule;
      
      still_running:
      	c = goodness(prev, this_cpu, prev->active_mm);
      	next = prev;
 673  	goto still_running_back;
      
      handle_softirq:
      	do_softirq();
 677  	goto handle_softirq_back;
      
      move_rr_last:
 680  	if (!prev->counter) {
      		prev->counter = NICE_TO_TICKS(prev->nice);
      		move_last_runqueue(prev);
      	}
 684  	goto move_rr_back;
      
      scheduling_in_interrupt:
      	printk("Scheduling in interrupt\n");
 688  	BUG();
 689  	return;
      }
      
 692  static inline void __wake_up_common (wait_queue_head_t *q, unsigned int mode,
      				     unsigned int wq_mode, const int sync)
      {
      	struct list_head *tmp, *head;
      	struct task_struct *p, *best_exclusive;
      	unsigned long flags;
      	int best_cpu, irq;
      
 700  	if (!q)
 701  		goto out;
      
      	best_cpu = smp_processor_id();
      	irq = in_interrupt();
      	best_exclusive = NULL;
 706  	wq_write_lock_irqsave(&q->lock, flags);
      
      #if WAITQUEUE_DEBUG
      	CHECK_MAGIC_WQHEAD(q);
      #endif
      
      	head = &q->task_list;
      #if WAITQUEUE_DEBUG
              if (!head->next || !head->prev)
                      WQ_BUG();
      #endif
      	tmp = head->next;
 718  	while (tmp != head) {
      		unsigned int state;
                      wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
      
      		tmp = tmp->next;
      
      #if WAITQUEUE_DEBUG
      		CHECK_MAGIC(curr->__magic);
      #endif
      		p = curr->task;
      		state = p->state;
 729  		if (state & mode) {
      #if WAITQUEUE_DEBUG
      			curr->__waker = (long)__builtin_return_address(0);
      #endif
      			/*
      			 * If waking up from an interrupt context then
      			 * prefer processes which are affine to this
      			 * CPU.
      			 */
 738  			if (irq && (curr->flags & wq_mode & WQ_FLAG_EXCLUSIVE)) {
 739  				if (!best_exclusive)
      					best_exclusive = p;
 741  				if (p->processor == best_cpu) {
      					best_exclusive = p;
 743  					break;
      				}
 745  			} else {
 746  				if (sync)
      					wake_up_process_synchronous(p);
 748  				else
      					wake_up_process(p);
 750  				if (curr->flags & wq_mode & WQ_FLAG_EXCLUSIVE)
 751  					break;
      			}
      		}
      	}
 755  	if (best_exclusive) {
 756  		if (sync)
      			wake_up_process_synchronous(best_exclusive);
 758  		else
      			wake_up_process(best_exclusive);
      	}
 761  	wq_write_unlock_irqrestore(&q->lock, flags);
      out:
 763  	return;
      }
      
 766  void __wake_up(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)
      {
      	__wake_up_common(q, mode, wq_mode, 0);
      }
      
 771  void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, unsigned int wq_mode)
      {
      	__wake_up_common(q, mode, wq_mode, 1);
      }
      
      #define	SLEEP_ON_VAR				\
      	unsigned long flags;			\
      	wait_queue_t wait;			\
      	init_waitqueue_entry(&wait, current);
      
      #define	SLEEP_ON_HEAD					\
      	wq_write_lock_irqsave(&q->lock,flags);		\
      	__add_wait_queue(q, &wait);			\
      	wq_write_unlock(&q->lock);
      
      #define	SLEEP_ON_TAIL						\
      	wq_write_lock_irq(&q->lock);				\
      	__remove_wait_queue(q, &wait);				\
      	wq_write_unlock_irqrestore(&q->lock,flags);
      
 791  void interruptible_sleep_on(wait_queue_head_t *q)
      {
      	SLEEP_ON_VAR
      
      	current->state = TASK_INTERRUPTIBLE;
      
 797  	SLEEP_ON_HEAD
      	schedule();
 799  	SLEEP_ON_TAIL
      }
      
 802  long interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
      {
      	SLEEP_ON_VAR
      
      	current->state = TASK_INTERRUPTIBLE;
      
 808  	SLEEP_ON_HEAD
      	timeout = schedule_timeout(timeout);
 810  	SLEEP_ON_TAIL
      
 812  	return timeout;
      }
      
 815  void sleep_on(wait_queue_head_t *q)
      {
      	SLEEP_ON_VAR
      	
      	current->state = TASK_UNINTERRUPTIBLE;
      
 821  	SLEEP_ON_HEAD
      	schedule();
 823  	SLEEP_ON_TAIL
      }
      
 826  long sleep_on_timeout(wait_queue_head_t *q, long timeout)
      {
      	SLEEP_ON_VAR
      	
      	current->state = TASK_UNINTERRUPTIBLE;
      
 832  	SLEEP_ON_HEAD
      	timeout = schedule_timeout(timeout);
 834  	SLEEP_ON_TAIL
      
 836  	return timeout;
      }
      
 839  void scheduling_functions_end_here(void) { }
      
      #ifndef __alpha__
      
      /*
       * This has been replaced by sys_setpriority.  Maybe it should be
       * moved into the arch dependent tree for those ports that require
       * it for backward compatibility?
       */
      
 849  asmlinkage long sys_nice(int increment)
      {
      	long newprio;
      
      	/*
      	 *	Setpriority might change our priority at the same moment.
      	 *	We don't have to worry. Conceptually one call occurs first
      	 *	and we have a single winner.
      	 */
 858  	if (increment < 0) {
 859  		if (!capable(CAP_SYS_NICE))
 860  			return -EPERM;
 861  		if (increment < -40)
      			increment = -40;
      	}
 864  	if (increment > 40)
      		increment = 40;
      
      	newprio = current->nice + increment;
 868  	if (newprio < -20)
      		newprio = -20;
 870  	if (newprio > 19)
      		newprio = 19;
      	current->nice = newprio;
 873  	return 0;
      }
      
      #endif
      
 878  static inline struct task_struct *find_process_by_pid(pid_t pid)
      {
      	struct task_struct *tsk = current;
      
 882  	if (pid)
      		tsk = find_task_by_pid(pid);
 884  	return tsk;
      }
      
 887  static int setscheduler(pid_t pid, int policy, 
      			struct sched_param *param)
      {
      	struct sched_param lp;
      	struct task_struct *p;
      	int retval;
      
      	retval = -EINVAL;
 895  	if (!param || pid < 0)
 896  		goto out_nounlock;
      
      	retval = -EFAULT;
 899  	if (copy_from_user(&lp, param, sizeof(struct sched_param)))
 900  		goto out_nounlock;
      
      	/*
      	 * We play safe to avoid deadlocks.
      	 */
 905  	read_lock_irq(&tasklist_lock);
      	spin_lock(&runqueue_lock);
      
      	p = find_process_by_pid(pid);
      
      	retval = -ESRCH;
 911  	if (!p)
 912  		goto out_unlock;
      			
 914  	if (policy < 0)
      		policy = p->policy;
 916  	else {
      		retval = -EINVAL;
      		if (policy != SCHED_FIFO && policy != SCHED_RR &&
 919  				policy != SCHED_OTHER)
 920  			goto out_unlock;
      	}
      	
      	/*
      	 * Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
      	 * priority for SCHED_OTHER is 0.
      	 */
      	retval = -EINVAL;
 928  	if (lp.sched_priority < 0 || lp.sched_priority > 99)
 929  		goto out_unlock;
 930  	if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))
 931  		goto out_unlock;
      
      	retval = -EPERM;
      	if ((policy == SCHED_FIFO || policy == SCHED_RR) && 
 935  	    !capable(CAP_SYS_NICE))
 936  		goto out_unlock;
      	if ((current->euid != p->euid) && (current->euid != p->uid) &&
 938  	    !capable(CAP_SYS_NICE))
 939  		goto out_unlock;
      
      	retval = 0;
      	p->policy = policy;
      	p->rt_priority = lp.sched_priority;
 944  	if (task_on_runqueue(p))
      		move_first_runqueue(p);
      
      	current->need_resched = 1;
      
      out_unlock:
 950  	spin_unlock(&runqueue_lock);
 951  	read_unlock_irq(&tasklist_lock);
      
      out_nounlock:
 954  	return retval;
      }
      
 957  asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, 
      				      struct sched_param *param)
      {
 960  	return setscheduler(pid, policy, param);
      }
      
 963  asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
      {
 965  	return setscheduler(pid, -1, param);
      }
      
 968  asmlinkage long sys_sched_getscheduler(pid_t pid)
      {
      	struct task_struct *p;
      	int retval;
      
      	retval = -EINVAL;
 974  	if (pid < 0)
 975  		goto out_nounlock;
      
      	retval = -ESRCH;
      	read_lock(&tasklist_lock);
      	p = find_process_by_pid(pid);
 980  	if (p)
      		retval = p->policy & ~SCHED_YIELD;
 982  	read_unlock(&tasklist_lock);
      
      out_nounlock:
 985  	return retval;
      }
      
 988  asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param *param)
      {
      	struct task_struct *p;
      	struct sched_param lp;
      	int retval;
      
      	retval = -EINVAL;
 995  	if (!param || pid < 0)
 996  		goto out_nounlock;
      
      	read_lock(&tasklist_lock);
      	p = find_process_by_pid(pid);
      	retval = -ESRCH;
1001  	if (!p)
1002  		goto out_unlock;
      	lp.sched_priority = p->rt_priority;
1004  	read_unlock(&tasklist_lock);
      
      	/*
      	 * This one might sleep, we cannot do it with a spinlock held ...
      	 */
      	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
      
      out_nounlock:
1012  	return retval;
      
      out_unlock:
1015  	read_unlock(&tasklist_lock);
1016  	return retval;
      }
      
1019  asmlinkage long sys_sched_yield(void)
      {
      	/*
      	 * Trick. sched_yield() first counts the number of truly 
      	 * 'pending' runnable processes, then returns if it's
      	 * only the current processes. (This test does not have
      	 * to be atomic.) In threaded applications this optimization
      	 * gets triggered quite often.
      	 */
      
      	int nr_pending = nr_running;
      
      #if CONFIG_SMP
      	int i;
      
      	// Substract non-idle processes running on other CPUs.
      	for (i = 0; i < smp_num_cpus; i++)
      		if (aligned_data[i].schedule_data.curr != idle_task(i))
      			nr_pending--;
      #else
      	// on UP this process is on the runqueue as well
      	nr_pending--;
      #endif
1042  	if (nr_pending) {
      		/*
      		 * This process can only be rescheduled by us,
      		 * so this is safe without any locking.
      		 */
1047  		if (current->policy == SCHED_OTHER)
      			current->policy |= SCHED_YIELD;
      		current->need_resched = 1;
      	}
1051  	return 0;
      }
      
1054  asmlinkage long sys_sched_get_priority_max(int policy)
      {
      	int ret = -EINVAL;
      
1058  	switch (policy) {
1059  	case SCHED_FIFO:
1060  	case SCHED_RR:
      		ret = 99;
1062  		break;
1063  	case SCHED_OTHER:
      		ret = 0;
1065  		break;
      	}
1067  	return ret;
      }
      
1070  asmlinkage long sys_sched_get_priority_min(int policy)
      {
      	int ret = -EINVAL;
      
1074  	switch (policy) {
1075  	case SCHED_FIFO:
1076  	case SCHED_RR:
      		ret = 1;
1078  		break;
1079  	case SCHED_OTHER:
      		ret = 0;
      	}
1082  	return ret;
      }
      
1085  asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval)
      {
      	struct timespec t;
      	struct task_struct *p;
      	int retval = -EINVAL;
      
1091  	if (pid < 0)
1092  		goto out_nounlock;
      
      	retval = -ESRCH;
      	read_lock(&tasklist_lock);
      	p = find_process_by_pid(pid);
1097  	if (p)
      		jiffies_to_timespec(p->policy & SCHED_FIFO ? 0 : NICE_TO_TICKS(p->nice),
      				    &t);
1100  	read_unlock(&tasklist_lock);
1101  	if (p)
      		retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
      out_nounlock:
1104  	return retval;
      }
      
1107  static void show_task(struct task_struct * p)
      {
      	unsigned long free = 0;
      	int state;
      	static const char * stat_nam[] = { "R", "S", "D", "Z", "T", "W" };
      
      	printk("%-8s  ", p->comm);
      	state = p->state ? ffz(~p->state) + 1 : 0;
1115  	if (((unsigned) state) < sizeof(stat_nam)/sizeof(char *))
      		printk(stat_nam[state]);
1117  	else
      		printk(" ");
      #if (BITS_PER_LONG == 32)
1120  	if (p == current)
      		printk(" current  ");
1122  	else
      		printk(" %08lX ", thread_saved_pc(&p->thread));
      #else
      	if (p == current)
      		printk("   current task   ");
      	else
      		printk(" %016lx ", thread_saved_pc(&p->thread));
      #endif
      	{
      		unsigned long * n = (unsigned long *) (p+1);
1132  		while (!*n)
      			n++;
      		free = (unsigned long) n - (unsigned long)(p+1);
      	}
      	printk("%5lu %5d %6d ", free, p->pid, p->p_pptr->pid);
1137  	if (p->p_cptr)
      		printk("%5d ", p->p_cptr->pid);
1139  	else
      		printk("      ");
1141  	if (!p->mm)
      		printk(" (L-TLB) ");
1143  	else
      		printk(" (NOTLB) ");
1145  	if (p->p_ysptr)
      		printk("%7d", p->p_ysptr->pid);
1147  	else
      		printk("       ");
1149  	if (p->p_osptr)
      		printk(" %5d\n", p->p_osptr->pid);
1151  	else
      		printk("\n");
      
      #ifdef CONFIG_X86
      /* This is very useful, but only works on x86 right now */
      	{
      		extern void show_trace(unsigned long);
      		show_trace(p->thread.esp);
      	}
      #endif
      }
      
1163  char * render_sigset_t(sigset_t *set, char *buffer)
      {
      	int i = _NSIG, x;
1166  	do {
      		i -= 4, x = 0;
1168  		if (sigismember(set, i+1)) x |= 1;
1169  		if (sigismember(set, i+2)) x |= 2;
1170  		if (sigismember(set, i+3)) x |= 4;
1171  		if (sigismember(set, i+4)) x |= 8;
      		*buffer++ = (x < 10 ? '0' : 'a' - 10) + x;
1173  	} while (i >= 4);
      	*buffer = 0;
1175  	return buffer;
      }
      
1178  void show_state(void)
      {
      	struct task_struct *p;
      
      #if (BITS_PER_LONG == 32)
      	printk("\n"
      	       "                         free                        sibling\n");
      	printk("  task             PC    stack   pid father child younger older\n");
      #else
      	printk("\n"
      	       "                                 free                        sibling\n");
      	printk("  task                 PC        stack   pid father child younger older\n");
      #endif
      	read_lock(&tasklist_lock);
1192  	for_each_task(p)
      		show_task(p);
1194  	read_unlock(&tasklist_lock);
      }
      
      /*
       *	Put all the gunge required to become a kernel thread without
       *	attached user resources in one place where it belongs.
       */
      
1202  void daemonize(void)
      {
      	struct fs_struct *fs;
      
      
      	/*
      	 * If we were started as result of loading a module, close all of the
      	 * user space pages.  We don't need them, and if we didn't close them
      	 * they would be locked into memory.
      	 */
      	exit_mm(current);
      
      	current->session = 1;
      	current->pgrp = 1;
      
      	/* Become as one with the init task */
      
      	exit_fs(current);	/* current->fs->count--; */
      	fs = init_task.fs;
      	current->fs = fs;
      	atomic_inc(&fs->count);
       	exit_files(current);
      	current->files = init_task.files;
      	atomic_inc(¤t->files->count);
      }
      
1228  void __init init_idle(void)
      {
      	struct schedule_data * sched_data;
      	sched_data = &aligned_data[smp_processor_id()].schedule_data;
      
1233  	if (current != &init_task && task_on_runqueue(current)) {
      		printk("UGH! (%d:%d) was on the runqueue, removing.\n",
      			smp_processor_id(), current->pid);
      		del_from_runqueue(current);
      	}
      	sched_data->curr = current;
      	sched_data->last_schedule = get_cycles();
      }
      
      extern void init_timervecs (void);
      
1244  void __init sched_init(void)
      {
      	/*
      	 * We have to do a little magic to get the first
      	 * process right in SMP mode.
      	 */
      	int cpu = smp_processor_id();
      	int nr;
      
      	init_task.processor = cpu;
      
1255  	for(nr = 0; nr < PIDHASH_SZ; nr++)
      		pidhash[nr] = NULL;
      
      	init_timervecs();
      
      	init_bh(TIMER_BH, timer_bh);
      	init_bh(TQUEUE_BH, tqueue_bh);
      	init_bh(IMMEDIATE_BH, immediate_bh);
      
      	/*
      	 * The boot idle thread does lazy MMU switching as well:
      	 */
      	atomic_inc(&init_mm.mm_count);
      	enter_lazy_tlb(&init_mm, current, cpu);
      }