/*
       *  linux/kernel/signal.c
       *
       *  Copyright (C) 1991, 1992  Linus Torvalds
       *
       *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
       */
      
      #include <linux/config.h>
      #include <linux/slab.h>
      #include <linux/module.h>
      #include <linux/unistd.h>
      #include <linux/smp_lock.h>
      #include <linux/init.h>
      #include <linux/sched.h>
      
      #include <asm/uaccess.h>
      
      /*
       * SLAB caches for signal bits.
       */
      
      #define DEBUG_SIG 0
      
      #if DEBUG_SIG
      #define SIG_SLAB_DEBUG	(SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
      #else
      #define SIG_SLAB_DEBUG	0
      #endif
      
      static kmem_cache_t *sigqueue_cachep;
      
  33  atomic_t nr_queued_signals;
      int max_queued_signals = 1024;
  35  
  36  void __init signals_init(void)
  37  {
  38  	sigqueue_cachep =
  39  		kmem_cache_create("sigqueue",
      				  sizeof(struct sigqueue),
      				  __alignof__(struct sigqueue),
      				  SIG_SLAB_DEBUG, NULL, NULL);
      	if (!sigqueue_cachep)
      		panic("signals_init(): cannot create sigqueue SLAB cache");
      }
      
      
      /* Given the mask, find the first available signal that should be serviced. */
      
      static int
      next_signal(struct task_struct *tsk, sigset_t *mask)
  52  {
  53  	unsigned long i, *s, *m, x;
  54  	int sig = 0;
  55  	
      	s = tsk->pending.signal.sig;
      	m = mask->sig;
      	switch (_NSIG_WORDS) {
  59  	default:
      		for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
  61  			if ((x = *s &~ *m) != 0) {
      				sig = ffz(~x) + i*_NSIG_BPW + 1;
      				break;
  64  			}
      		break;
      
      	case 2: if ((x = s[0] &~ m[0]) != 0)
      			sig = 1;
      		else if ((x = s[1] &~ m[1]) != 0)
      			sig = _NSIG_BPW + 1;
      		else
  72  			break;
      		sig += ffz(~x);
      		break;
      
      	case 1: if ((x = *s &~ *m) != 0)
      			sig = ffz(~x) + 1;
  78  		break;
      	}
      	
      	return sig;
  82  }
      
      static void flush_sigqueue(struct sigpending *queue)
  85  {
      	struct sigqueue *q, *n;
      
  88  	sigemptyset(&queue->signal);
  89  	q = queue->head;
      	queue->head = NULL;
      	queue->tail = &queue->head;
      
      	while (q) {
  94  		n = q->next;
      		kmem_cache_free(sigqueue_cachep, q);
      		atomic_dec(&nr_queued_signals);
      		q = n;
      	}
      }
 100  
 101  /*
       * Flush all pending signals for a task.
 103   */
 104  
      void
      flush_signals(struct task_struct *t)
 107  {
      	t->sigpending = 0;
      	flush_sigqueue(&t->pending);
      }
 111  
      void exit_sighand(struct task_struct *tsk)
      {
 114  	struct signal_struct * sig = tsk->sig;
      
      	spin_lock_irq(&tsk->sigmask_lock);
 117  	if (sig) {
 118  		tsk->sig = NULL;
      		if (atomic_dec_and_test(&sig->count))
      			kmem_cache_free(sigact_cachep, sig);
      	}
      	tsk->sigpending = 0;
 123  	flush_sigqueue(&tsk->pending);
      	spin_unlock_irq(&tsk->sigmask_lock);
      }
      
      /*
       * Flush all handlers for a task.
 129   */
      
      void
      flush_signal_handlers(struct task_struct *t)
 133  {
 134  	int i;
      	struct k_sigaction *ka = &t->sig->action[0];
      	for (i = _NSIG ; i != 0 ; i--) {
      		if (ka->sa.sa_handler != SIG_IGN)
      			ka->sa.sa_handler = SIG_DFL;
      		ka->sa.sa_flags = 0;
      		sigemptyset(&ka->sa.sa_mask);
      		ka++;
 142  	}
      }
      
 145  /* Notify the system that a driver wants to block all signals for this
 146   * process, and wants to be notified if any signals at all were to be
       * sent/acted upon.  If the notifier routine returns non-zero, then the
       * signal will be acted upon after all.  If the notifier routine returns 0,
       * then then signal will be blocked.  Only one block per process is
       * allowed.  priv is a pointer to private data that the notifier routine
 151   * can use to determine if the signal should be blocked or not.  */
      
      void
      block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 155  {
      	unsigned long flags;
      
 158  	spin_lock_irqsave(¤t->sigmask_lock, flags);
      	current->notifier_mask = mask;
      	current->notifier_data = priv;
      	current->notifier = notifier;
      	spin_unlock_irqrestore(¤t->sigmask_lock, flags);
      }
      
      /* Notify the system that blocking has ended. */
      
      void
      unblock_all_signals(void)
      {
      	unsigned long flags;
      
      	spin_lock_irqsave(¤t->sigmask_lock, flags);
      	current->notifier = NULL;
      	current->notifier_data = NULL;
      	recalc_sigpending(current);
      	spin_unlock_irqrestore(¤t->sigmask_lock, flags);
      }
      
      static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
      {
      	if (sigismember(&list->signal, sig)) {
      		/* Collect the siginfo appropriate to this signal.  */
      		struct sigqueue *q, **pp;
      		pp = &list->head;
      		while ((q = *pp) != NULL) {
      			if (q->info.si_signo == sig)
      				goto found_it;
      			pp = &q->next;
 189  		}
      
      		/* Ok, it wasn't in the queue.  We must have
      		   been out of queue space.  So zero out the
      		   info.  */
      		sigdelset(&list->signal, sig);
      		info->si_signo = sig;
      		info->si_errno = 0;
      		info->si_code = 0;
      		info->si_pid = 0;
      		info->si_uid = 0;
      		return 1;
      
      found_it:
      		if ((*pp = q->next) == NULL)
      			list->tail = pp;
      
      		/* Copy the sigqueue information and free the queue entry */
      		copy_siginfo(info, &q->info);
      		kmem_cache_free(sigqueue_cachep,q);
      		atomic_dec(&nr_queued_signals);
      
      		/* Non-RT signals can exist multiple times.. */
      		if (sig >= SIGRTMIN) {
      			while ((q = *pp) != NULL) {
      				if (q->info.si_signo == sig)
      					goto found_another;
      				pp = &q->next;
      			}
      		}
      
      		sigdelset(&list->signal, sig);
      found_another:
      		return 1;
      	}
      	return 0;
      }
      
      /*
       * Dequeue a signal and return the element to the caller, which is 
       * expected to free it.
       *
       * All callers must be holding current->sigmask_lock.
       */
      
      int
 235  dequeue_signal(sigset_t *mask, siginfo_t *info)
 236  {
 237  	int sig = 0;
      
      #if DEBUG_SIG
      printk("SIG dequeue (%s:%d): %d ", current->comm, current->pid,
      	signal_pending(current));
      #endif
 243  
      	sig = next_signal(current, mask);
      	if (current->notifier) {
 246  		if (sigismember(current->notifier_mask, sig)) {
      			if (!(current->notifier)(current->notifier_data)) {
      				current->sigpending = 0;
 249  				return 0;
      			}
      		}
      	}
      
      	if (sig) {
      		if (!collect_signal(sig, ¤t->pending, info))
 256  			sig = 0;
 257  				
      		/* XXX: Once POSIX.1b timers are in, if si_code == SI_TIMER,
      		   we need to xchg out the timer overrun values.  */
      	}
 261  	recalc_sigpending(current);
 262  
      #if DEBUG_SIG
      printk(" %d -> %d\n", signal_pending(current), sig);
 265  #endif
      
      	return sig;
 268  }
      
 270  static int rm_from_queue(int sig, struct sigpending *s)
 271  {
 272  	struct sigqueue *q, **pp;
      
      	if (!sigismember(&s->signal, sig))
      		return 0;
 276  
      	sigdelset(&s->signal, sig);
      
 279  	pp = &s->head;
      
      	while ((q = *pp) != NULL) {
      		if (q->info.si_signo == sig) {
      			if ((*pp = q->next) == NULL)
      				s->tail = pp;
      			kmem_cache_free(sigqueue_cachep,q);
      			atomic_dec(&nr_queued_signals);
 287  			continue;
 288  		}
 289  		pp = &q->next;
 290  	}
      	return 1;
      }
 293  
      /*
       * Remove signal sig from t->pending.
 296   * Returns 1 if sig was found.
       *
 298   * All callers must be holding t->sigmask_lock.
 299   */
      static int rm_sig_from_queue(int sig, struct task_struct *t)
 301  {
 302  	return rm_from_queue(sig, &t->pending);
      }
      
      /*
       * Bad permissions for sending the signal
 307   */
      int bad_signal(int sig, struct siginfo *info, struct task_struct *t)
      {
      	return (!info || ((unsigned long)info != 1 && SI_FROMUSER(info)))
 311  	    && ((sig != SIGCONT) || (current->session != t->session))
      	    && (current->euid ^ t->suid) && (current->euid ^ t->uid)
      	    && (current->uid ^ t->suid) && (current->uid ^ t->uid)
      	    && !capable(CAP_KILL);
      }
      
      /*
       * Signal type:
 319   *    < 0 : global action (kill - spread to all non-blocked threads)
       *    = 0 : ignored
       *    > 0 : wake up.
       */
      static int signal_type(int sig, struct signal_struct *signals)
      {
      	unsigned long handler;
      
      	if (!signals)
      		return 0;
      	
      	handler = (unsigned long) signals->action[sig-1].sa.sa_handler;
      	if (handler > 1)
      		return 1;
      
      	/* "Ignore" handler.. Illogical, but that has an implicit handler for SIGCHLD */
      	if (handler == 1)
      		return sig == SIGCHLD;
      
      	/* Default handler. Normally lethal, but.. */
      	switch (sig) {
      
      	/* Ignored */
      	case SIGCONT: case SIGWINCH:
      	case SIGCHLD: case SIGURG:
      		return 0;
      
      	/* Implicit behaviour */
      	case SIGTSTP: case SIGTTIN: case SIGTTOU:
      		return 1;
 349  
      	/* Implicit actions (kill or do special stuff) */
 351  	default:
      		return -1;
      	}
      }
      		
      
      /*
 358   * Determine whether a signal should be posted or not.
       *
       * Signals with SIG_IGN can be ignored, except for the
       * special case of a SIGCHLD. 
       *
       * Some signals with SIG_DFL default to a non-action.
       */
 365  static int ignored_signal(int sig, struct task_struct *t)
      {
      	/* Don't ignore traced or blocked signals */
      	if ((t->ptrace & PT_PTRACED) || sigismember(&t->blocked, sig))
      		return 0;
      
      	return signal_type(sig, t->sig) == 0;
      }
 373  
 374  /*
       * Handle TASK_STOPPED cases etc implicit behaviour
       * of certain magical signals.
       *
       * SIGKILL gets spread out to every thread. 
       */
      static void handle_stop_signal(int sig, struct task_struct *t)
 381  {
      	switch (sig) {
      	case SIGKILL: case SIGCONT:
      		/* Wake up the process if stopped.  */
 385  		if (t->state == TASK_STOPPED)
      			wake_up_process(t);
      		t->exit_code = 0;
 388  		rm_sig_from_queue(SIGSTOP, t);
      		rm_sig_from_queue(SIGTSTP, t);
      		rm_sig_from_queue(SIGTTOU, t);
      		rm_sig_from_queue(SIGTTIN, t);
      		break;
      
      	case SIGSTOP: case SIGTSTP:
      	case SIGTTIN: case SIGTTOU:
 396  		/* If we're stopping again, cancel SIGCONT */
 397  		rm_sig_from_queue(SIGCONT, t);
      		break;
      	}
      }
      
      static int send_signal(int sig, struct siginfo *info, struct sigpending *signals)
      {
      	struct sigqueue * q = NULL;
 405  
 406  	/* Real-time signals must be queued if sent by sigqueue, or
      	   some other real-time mechanism.  It is implementation
      	   defined whether kill() does so.  We attempt to do so, on
 409  	   the principle of least surprise, but since kill is not
 410  	   allowed to fail with EAGAIN when low on memory we just
      	   make sure at least one signal gets delivered and don't
 412  	   pass on the info struct.  */
      
      	if (atomic_read(&nr_queued_signals) < max_queued_signals) {
      		q = kmem_cache_alloc(sigqueue_cachep, GFP_ATOMIC);
 416  	}
 417  
      	if (q) {
      		atomic_inc(&nr_queued_signals);
      		q->next = NULL;
 421  		*signals->tail = q;
      		signals->tail = &q->next;
 423  		switch ((unsigned long) info) {
      			case 0:
      				q->info.si_signo = sig;
      				q->info.si_errno = 0;
      				q->info.si_code = SI_USER;
      				q->info.si_pid = current->pid;
      				q->info.si_uid = current->uid;
      				break;
 431  			case 1:
 432  				q->info.si_signo = sig;
      				q->info.si_errno = 0;
      				q->info.si_code = SI_KERNEL;
      				q->info.si_pid = 0;
      				q->info.si_uid = 0;
      				break;
      			default:
      				copy_siginfo(&q->info, info);
      				break;
      		}
      	} else if (sig >= SIGRTMIN && info && (unsigned long)info != 1
      		   && info->si_code != SI_USER) {
      		/*
      		 * Queue overflow, abort.  We may abort if the signal was rt
      		 * and sent by user using something other than kill().
      		 */
      		return -EAGAIN;
      	}
 450  
      	sigaddset(&signals->signal, sig);
      	return 0;
 453  }
      
      /*
       * Tell a process that it has a new active signal..
       *
 458   * NOTE! we rely on the previous spin_lock to
       * lock interrupts for us! We can only be called with
       * "sigmask_lock" held, and the local interrupt must
       * have been disabled when that got acquired!
       *
       * No need to set need_resched since signal event passing
       * goes through ->blocked
       */
 466  static inline void signal_wake_up(struct task_struct *t)
 467  {
      	t->sigpending = 1;
      
      	if (t->state & TASK_INTERRUPTIBLE) {
      		wake_up_process(t);
      		return;
      	}
      
      #ifdef CONFIG_SMP
      	/*
      	 * If the task is running on a different CPU 
 478  	 * force a reschedule on the other CPU to make
 479  	 * it notice the new signal quickly.
      	 *
      	 * The code below is a tad loose and might occasionally
      	 * kick the wrong CPU if we catch the process in the
      	 * process of changing - but no harm is done by that
      	 * other than doing an extra (lightweight) IPI interrupt.
      	 */
      	spin_lock(&runqueue_lock);
      	if (t->has_cpu && t->processor != smp_processor_id())
      		smp_send_reschedule(t->processor);
      	spin_unlock(&runqueue_lock);
      #endif /* CONFIG_SMP */
 491  }
 492  
      static int deliver_signal(int sig, struct siginfo *info, struct task_struct *t)
      {
      	int retval = send_signal(sig, info, &t->pending);
 496  
      	if (!retval && !sigismember(&t->blocked, sig))
 498  		signal_wake_up(t);
      
      	return retval;
      }
      
      int
      send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
      {
 506  	unsigned long flags;
 507  	int ret;
      
      
      #if DEBUG_SIG
      printk("SIG queue (%s:%d): %d ", t->comm, t->pid, sig);
      #endif
      
      	ret = -EINVAL;
      	if (sig < 0 || sig > _NSIG)
      		goto out_nolock;
      	/* The somewhat baroque permissions check... */
      	ret = -EPERM;
      	if (bad_signal(sig, info, t))
      		goto out_nolock;
      
      	/* The null signal is a permissions and process existance probe.
      	   No signal is actually delivered.  Same goes for zombies. */
      	ret = 0;
 525  	if (!sig || !t->sig)
      		goto out_nolock;
      
 528  	spin_lock_irqsave(&t->sigmask_lock, flags);
      	handle_stop_signal(sig, t);
      
      	/* Optimize away the signal, if it's a signal that can be
      	   handled immediately (ie non-blocked and untraced) and
      	   that is ignored (either explicitly or by default).  */
      
      	if (ignored_signal(sig, t))
      		goto out;
      
 538  	/* Support queueing exactly one non-rt signal, so that we
      	   can get more detailed information about the cause of
      	   the signal. */
      	if (sig < SIGRTMIN && sigismember(&t->pending.signal, sig))
 542  		goto out;
      
 544  	ret = deliver_signal(sig, info, t);
 545  out:
      	spin_unlock_irqrestore(&t->sigmask_lock, flags);
 547  	if ((t->state & TASK_INTERRUPTIBLE) && signal_pending(t))
      		wake_up_process(t);
 549  out_nolock:
 550  #if DEBUG_SIG
      printk(" %d -> %d\n", signal_pending(t), ret);
 552  #endif
      
      	return ret;
 555  }
      
      /*
       * Force a signal that the process can't ignore: if necessary
       * we unblock the signal and change any SIG_IGN to SIG_DFL.
       */
      
 562  int
      force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 564  {
      	unsigned long int flags;
      
 567  	spin_lock_irqsave(&t->sigmask_lock, flags);
      	if (t->sig == NULL) {
      		spin_unlock_irqrestore(&t->sigmask_lock, flags);
 570  		return -ESRCH;
 571  	}
      
      	if (t->sig->action[sig-1].sa.sa_handler == SIG_IGN)
      		t->sig->action[sig-1].sa.sa_handler = SIG_DFL;
 575  	sigdelset(&t->blocked, sig);
      	recalc_sigpending(t);
      	spin_unlock_irqrestore(&t->sigmask_lock, flags);
      
      	return send_sig_info(sig, info, t);
      }
      
      /*
       * kill_pg_info() sends a signal to a process group: this is what the tty
 584   * control characters do (^C, ^Z etc)
       */
      
      int
      kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
      {
      	int retval = -EINVAL;
      	if (pgrp > 0) {
      		struct task_struct *p;
      
      		retval = -ESRCH;
 595  		read_lock(&tasklist_lock);
 596  		for_each_task(p) {
      			if (p->pgrp == pgrp) {
 598  				int err = send_sig_info(sig, info, p);
      				if (retval)
      					retval = err;
 601  			}
      		}
      		read_unlock(&tasklist_lock);
 604  	}
      	return retval;
 606  }
      
 608  /*
 609   * kill_sl_info() sends a signal to the session leader: this is used
       * to send SIGHUP to the controlling process of a terminal when
 611   * the connection is lost.
       */
      
      int
      kill_sl_info(int sig, struct siginfo *info, pid_t sess)
      {
      	int retval = -EINVAL;
      	if (sess > 0) {
 619  		struct task_struct *p;
 620  
      		retval = -ESRCH;
      		read_lock(&tasklist_lock);
      		for_each_task(p) {
 624  			if (p->leader && p->session == sess) {
 625  				int err = send_sig_info(sig, info, p);
      				if (retval)
      					retval = err;
 628  			}
      		}
      		read_unlock(&tasklist_lock);
      	}
      	return retval;
      }
      
      inline int
      kill_proc_info(int sig, struct siginfo *info, pid_t pid)
 637  {
      	int error;
 639  	struct task_struct *p;
      
      	read_lock(&tasklist_lock);
      	p = find_task_by_pid(pid);
      	error = -ESRCH;
 644  	if (p)
 645  		error = send_sig_info(sig, info, p);
 646  	read_unlock(&tasklist_lock);
      	return error;
 648  }
      
 650  
      /*
       * kill_something_info() interprets pid in interesting ways just like kill(2).
 653   *
       * POSIX specifies that kill(-1,sig) is unspecified, but what we have
       * is probably wrong.  Should make it like BSD or SYSV.
       */
 657  
 658  static int kill_something_info(int sig, struct siginfo *info, int pid)
      {
 660  	if (!pid) {
 661  		return kill_pg_info(sig, info, current->pgrp);
 662  	} else if (pid == -1) {
      		int retval = 0, count = 0;
 664  		struct task_struct * p;
 665  
 666  		read_lock(&tasklist_lock);
      		for_each_task(p) {
      			if (p->pid > 1 && p != current) {
 669  				int err = send_sig_info(sig, info, p);
      				++count;
      				if (err != -EPERM)
 672  					retval = err;
      			}
      		}
 675  		read_unlock(&tasklist_lock);
      		return count ? retval : -ESRCH;
 677  	} else if (pid < 0) {
 678  		return kill_pg_info(sig, info, -pid);
 679  	} else {
 680  		return kill_proc_info(sig, info, pid);
      	}
      }
      
 684  /*
       * These are for backward compatibility with the rest of the kernel source.
       */
      
      int
      send_sig(int sig, struct task_struct *p, int priv)
      {
      	return send_sig_info(sig, (void*)(long)(priv != 0), p);
      }
      
      void
      force_sig(int sig, struct task_struct *p)
      {
      	force_sig_info(sig, (void*)1L, p);
      }
      
      int
      kill_pg(pid_t pgrp, int sig, int priv)
 702  {
      	return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
      }
      
 706  int
      kill_sl(pid_t sess, int sig, int priv)
      {
      	return kill_sl_info(sig, (void *)(long)(priv != 0), sess);
 710  }
      
      int
      kill_proc(pid_t pid, int sig, int priv)
      {
 715  	return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
      }
      
      /*
       * Joy. Or not. Pthread wants us to wake up every thread
       * in our parent group.
       */
      static void wake_up_parent(struct task_struct *parent)
      {
      	struct task_struct *tsk = parent;
      
      	do {
      		wake_up_interruptible(&tsk->wait_chldexit);
      		tsk = next_thread(tsk);
      	} while (tsk != parent);
      }
      
      /*
       * Let a parent know about a status change of a child.
       */
      
      void do_notify_parent(struct task_struct *tsk, int sig)
      {
      	struct siginfo info;
      	int why, status;
      
      	info.si_signo = sig;
      	info.si_errno = 0;
      	info.si_pid = tsk->pid;
      	info.si_uid = tsk->uid;
      
      	/* FIXME: find out whether or not this is supposed to be c*time. */
      	info.si_utime = tsk->times.tms_utime;
      	info.si_stime = tsk->times.tms_stime;
      
      	status = tsk->exit_code & 0x7f;
      	why = SI_KERNEL;	/* shouldn't happen */
      	switch (tsk->state) {
      	case TASK_STOPPED:
      		/* FIXME -- can we deduce CLD_TRAPPED or CLD_CONTINUED? */
      		if (tsk->ptrace & PT_PTRACED)
      			why = CLD_TRAPPED;
      		else
      			why = CLD_STOPPED;
      		break;
      
      	default:
      		if (tsk->exit_code & 0x80)
      			why = CLD_DUMPED;
      		else if (tsk->exit_code & 0x7f)
      			why = CLD_KILLED;
      		else {
      			why = CLD_EXITED;
      			status = tsk->exit_code >> 8;
      		}
      		break;
      	}
      	info.si_code = why;
      	info.si_status = status;
      
      	send_sig_info(sig, &info, tsk->p_pptr);
      	wake_up_parent(tsk->p_pptr);
      }
      
      
      /*
       * We need the tasklist lock because it's the only
       * thing that protects out "parent" pointer.
       *
       * exit.c calls "do_notify_parent()" directly, because
       * it already has the tasklist lock.
       */
      void
      notify_parent(struct task_struct *tsk, int sig)
      {
      	read_lock(&tasklist_lock);
      	do_notify_parent(tsk, sig);
      	read_unlock(&tasklist_lock);
      }
      
      EXPORT_SYMBOL(dequeue_signal);
      EXPORT_SYMBOL(flush_signals);
      EXPORT_SYMBOL(force_sig);
      EXPORT_SYMBOL(force_sig_info);
      EXPORT_SYMBOL(kill_pg);
      EXPORT_SYMBOL(kill_pg_info);
      EXPORT_SYMBOL(kill_proc);
      EXPORT_SYMBOL(kill_proc_info);
      EXPORT_SYMBOL(kill_sl);
      EXPORT_SYMBOL(kill_sl_info);
      EXPORT_SYMBOL(notify_parent);
      EXPORT_SYMBOL(recalc_sigpending);
      EXPORT_SYMBOL(send_sig);
      EXPORT_SYMBOL(send_sig_info);
      EXPORT_SYMBOL(block_all_signals);
      EXPORT_SYMBOL(unblock_all_signals);
      
      
      /*
       * System call entry points.
       */
      
      /*
       * We don't need to get the kernel lock - this is all local to this
       * particular thread.. (and that's good, because this is _heavily_
       * used by various programs)
       */
      
      asmlinkage long
      sys_rt_sigprocmask(int how, sigset_t *set, sigset_t *oset, size_t sigsetsize)
      {
      	int error = -EINVAL;
      	sigset_t old_set, new_set;
      
      	/* XXX: Don't preclude handling different sized sigset_t's.  */
      	if (sigsetsize != sizeof(sigset_t))
      		goto out;
      
      	if (set) {
      		error = -EFAULT;
      		if (copy_from_user(&new_set, set, sizeof(*set)))
      			goto out;
      		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
      
      		spin_lock_irq(¤t->sigmask_lock);
      		old_set = current->blocked;
      
      		error = 0;
      		switch (how) {
      		default:
      			error = -EINVAL;
      			break;
      		case SIG_BLOCK:
      			sigorsets(&new_set, &old_set, &new_set);
      			break;
      		case SIG_UNBLOCK:
      			signandsets(&new_set, &old_set, &new_set);
      			break;
      		case SIG_SETMASK:
      			break;
      		}
      
      		current->blocked = new_set;
      		recalc_sigpending(current);
      		spin_unlock_irq(¤t->sigmask_lock);
      		if (error)
      			goto out;
      		if (oset)
      			goto set_old;
      	} else if (oset) {
      		spin_lock_irq(¤t->sigmask_lock);
      		old_set = current->blocked;
      		spin_unlock_irq(¤t->sigmask_lock);
      
      	set_old:
      		error = -EFAULT;
      		if (copy_to_user(oset, &old_set, sizeof(*oset)))
      			goto out;
      	}
      	error = 0;
      out:
      	return error;
      }
      
      long do_sigpending(void *set, unsigned long sigsetsize)
      {
      	long error = -EINVAL;
      	sigset_t pending;
      
      	if (sigsetsize > sizeof(sigset_t))
      		goto out;
      
      	spin_lock_irq(¤t->sigmask_lock);
      	sigandsets(&pending, ¤t->blocked, ¤t->pending.signal);
      	spin_unlock_irq(¤t->sigmask_lock);
      
      	error = -EFAULT;
      	if (!copy_to_user(set, &pending, sigsetsize))
      		error = 0;
      out:
      	return error;
      }	
      
      asmlinkage long
      sys_rt_sigpending(sigset_t *set, size_t sigsetsize)
      {
      	return do_sigpending(set, sigsetsize);
      }
      
      asmlinkage long
      sys_rt_sigtimedwait(const sigset_t *uthese, siginfo_t *uinfo,
      		    const struct timespec *uts, size_t sigsetsize)
      {
      	int ret, sig;
      	sigset_t these;
      	struct timespec ts;
      	siginfo_t info;
      	long timeout = 0;
      
      	/* XXX: Don't preclude handling different sized sigset_t's.  */
      	if (sigsetsize != sizeof(sigset_t))
      		return -EINVAL;
      
      	if (copy_from_user(&these, uthese, sizeof(these)))
      		return -EFAULT;
      		
      	/*
      	 * Invert the set of allowed signals to get those we
      	 * want to block.
      	 */
      	sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
      	signotset(&these);
      
      	if (uts) {
      		if (copy_from_user(&ts, uts, sizeof(ts)))
      			return -EFAULT;
      		if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
      		    || ts.tv_sec < 0)
      			return -EINVAL;
      	}
      
      	spin_lock_irq(¤t->sigmask_lock);
      	sig = dequeue_signal(&these, &info);
      	if (!sig) {
      		timeout = MAX_SCHEDULE_TIMEOUT;
      		if (uts)
      			timeout = (timespec_to_jiffies(&ts)
      				   + (ts.tv_sec || ts.tv_nsec));
      
      		if (timeout) {
      			/* None ready -- temporarily unblock those we're
      			 * interested while we are sleeping in so that we'll
      			 * be awakened when they arrive.  */
      			sigset_t oldblocked = current->blocked;
      			sigandsets(¤t->blocked, ¤t->blocked, &these);
      			recalc_sigpending(current);
      			spin_unlock_irq(¤t->sigmask_lock);
      
      			current->state = TASK_INTERRUPTIBLE;
      			timeout = schedule_timeout(timeout);
      
      			spin_lock_irq(¤t->sigmask_lock);
      			sig = dequeue_signal(&these, &info);
      			current->blocked = oldblocked;
      			recalc_sigpending(current);
      		}
      	}
      	spin_unlock_irq(¤t->sigmask_lock);
      
      	if (sig) {
      		ret = sig;
      		if (uinfo) {
      			if (copy_siginfo_to_user(uinfo, &info))
      				ret = -EFAULT;
      		}
      	} else {
      		ret = -EAGAIN;
      		if (timeout)
      			ret = -EINTR;
      	}
      
      	return ret;
      }
      
      asmlinkage long
      sys_kill(int pid, int sig)
      {
      	struct siginfo info;
      
      	info.si_signo = sig;
      	info.si_errno = 0;
      	info.si_code = SI_USER;
      	info.si_pid = current->pid;
      	info.si_uid = current->uid;
      
      	return kill_something_info(sig, &info, pid);
      }
      
      asmlinkage long
      sys_rt_sigqueueinfo(int pid, int sig, siginfo_t *uinfo)
      {
      	siginfo_t info;
      
      	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
      		return -EFAULT;
      
      	/* Not even root can pretend to send signals from the kernel.
      	   Nor can they impersonate a kill(), which adds source info.  */
      	if (info.si_code >= 0)
      		return -EPERM;
      	info.si_signo = sig;
      
      	/* POSIX.1b doesn't mention process groups.  */
      	return kill_proc_info(sig, &info, pid);
      }
      
      int
      do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
      {
      	struct k_sigaction *k;
      
      	if (sig < 1 || sig > _NSIG ||
      	    (act && (sig == SIGKILL || sig == SIGSTOP)))
      		return -EINVAL;
      
      	k = ¤t->sig->action[sig-1];
      
      	spin_lock(¤t->sig->siglock);
      
      	if (oact)
      		*oact = *k;
      
      	if (act) {
      		*k = *act;
      		sigdelsetmask(&k->sa.sa_mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
      
      		/*
      		 * POSIX 3.3.1.3:
      		 *  "Setting a signal action to SIG_IGN for a signal that is
      		 *   pending shall cause the pending signal to be discarded,
      		 *   whether or not it is blocked."
      		 *
      		 *  "Setting a signal action to SIG_DFL for a signal that is
      		 *   pending and whose default action is to ignore the signal
      		 *   (for example, SIGCHLD), shall cause the pending signal to
      		 *   be discarded, whether or not it is blocked"
      		 *
      		 * Note the silly behaviour of SIGCHLD: SIG_IGN means that the
      		 * signal isn't actually ignored, but does automatic child
      		 * reaping, while SIG_DFL is explicitly said by POSIX to force
      		 * the signal to be ignored.
      		 */
      
      		if (k->sa.sa_handler == SIG_IGN
      		    || (k->sa.sa_handler == SIG_DFL
      			&& (sig == SIGCONT ||
      			    sig == SIGCHLD ||
      			    sig == SIGWINCH))) {
      			spin_lock_irq(¤t->sigmask_lock);
      			if (rm_sig_from_queue(sig, current))
      				recalc_sigpending(current);
      			spin_unlock_irq(¤t->sigmask_lock);
      		}
      	}
      
      	spin_unlock(¤t->sig->siglock);
      	return 0;
      }
      
      int 
      do_sigaltstack (const stack_t *uss, stack_t *uoss, unsigned long sp)
      {
      	stack_t oss;
      	int error;
      
      	if (uoss) {
      		oss.ss_sp = (void *) current->sas_ss_sp;
      		oss.ss_size = current->sas_ss_size;
      		oss.ss_flags = sas_ss_flags(sp);
      	}
      
      	if (uss) {
      		void *ss_sp;
      		size_t ss_size;
      		int ss_flags;
      
      		error = -EFAULT;
      		if (verify_area(VERIFY_READ, uss, sizeof(*uss))
      		    || __get_user(ss_sp, &uss->ss_sp)
      		    || __get_user(ss_flags, &uss->ss_flags)
      		    || __get_user(ss_size, &uss->ss_size))
      			goto out;
      
      		error = -EPERM;
      		if (on_sig_stack (sp))
      			goto out;
      
      		error = -EINVAL;
      		/*
      		 *
      		 * Note - this code used to test ss_flags incorrectly
      		 *  	  old code may have been written using ss_flags==0
      		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
      		 *	  way that worked) - this fix preserves that older
      		 *	  mechanism
      		 */
      		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
      			goto out;
      
      		if (ss_flags == SS_DISABLE) {
      			ss_size = 0;
      			ss_sp = NULL;
      		} else {
      			error = -ENOMEM;
      			if (ss_size < MINSIGSTKSZ)
      				goto out;
      		}
      
      		current->sas_ss_sp = (unsigned long) ss_sp;
      		current->sas_ss_size = ss_size;
      	}
      
      	if (uoss) {
      		error = -EFAULT;
      		if (copy_to_user(uoss, &oss, sizeof(oss)))
      			goto out;
      	}
      
      	error = 0;
      out:
      	return error;
      }
      
      asmlinkage long
      sys_sigpending(old_sigset_t *set)
      {
      	return do_sigpending(set, sizeof(*set));
      }
      
      #if !defined(__alpha__)
      /* Alpha has its own versions with special arguments.  */
      
      asmlinkage long
      sys_sigprocmask(int how, old_sigset_t *set, old_sigset_t *oset)
      {
      	int error;
      	old_sigset_t old_set, new_set;
      
      	if (set) {
      		error = -EFAULT;
      		if (copy_from_user(&new_set, set, sizeof(*set)))
      			goto out;
      		new_set &= ~(sigmask(SIGKILL)|sigmask(SIGSTOP));
      
      		spin_lock_irq(¤t->sigmask_lock);
      		old_set = current->blocked.sig[0];
      
      		error = 0;
      		switch (how) {
      		default:
      			error = -EINVAL;
      			break;
      		case SIG_BLOCK:
      			sigaddsetmask(¤t->blocked, new_set);
      			break;
      		case SIG_UNBLOCK:
      			sigdelsetmask(¤t->blocked, new_set);
      			break;
      		case SIG_SETMASK:
      			current->blocked.sig[0] = new_set;
      			break;
      		}
      
      		recalc_sigpending(current);
      		spin_unlock_irq(¤t->sigmask_lock);
      		if (error)
      			goto out;
      		if (oset)
      			goto set_old;
      	} else if (oset) {
      		old_set = current->blocked.sig[0];
      	set_old:
      		error = -EFAULT;
      		if (copy_to_user(oset, &old_set, sizeof(*oset)))
      			goto out;
      	}
      	error = 0;
      out:
      	return error;
      }
      
      #ifndef __sparc__
      asmlinkage long
      sys_rt_sigaction(int sig, const struct sigaction *act, struct sigaction *oact,
      		 size_t sigsetsize)
      {
      	struct k_sigaction new_sa, old_sa;
      	int ret = -EINVAL;
      
      	/* XXX: Don't preclude handling different sized sigset_t's.  */
      	if (sigsetsize != sizeof(sigset_t))
      		goto out;
      
      	if (act) {
      		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
      			return -EFAULT;
      	}
      
      	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
      
      	if (!ret && oact) {
      		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
      			return -EFAULT;
      	}
      out:
      	return ret;
      }
      #endif /* __sparc__ */
      #endif
      
      #if !defined(__alpha__) && !defined(__ia64__)
      /*
       * For backwards compatibility.  Functionality superseded by sigprocmask.
       */
      asmlinkage long
      sys_sgetmask(void)
      {
      	/* SMP safe */
      	return current->blocked.sig[0];
      }
      
      asmlinkage long
      sys_ssetmask(int newmask)
      {
      	int old;
      
      	spin_lock_irq(¤t->sigmask_lock);
      	old = current->blocked.sig[0];
      
      	siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
      						  sigmask(SIGSTOP)));
      	recalc_sigpending(current);
      	spin_unlock_irq(¤t->sigmask_lock);
      
      	return old;
      }
      #endif /* !defined(__alpha__) */
      
      #if !defined(__alpha__) && !defined(__ia64__) && !defined(__mips__)
      /*
       * For backwards compatibility.  Functionality superseded by sigaction.
       */
      asmlinkage unsigned long
      sys_signal(int sig, __sighandler_t handler)
      {
      	struct k_sigaction new_sa, old_sa;
      	int ret;
      
      	new_sa.sa.sa_handler = handler;
      	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
      
      	ret = do_sigaction(sig, &new_sa, &old_sa);
      
      	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
      }
      #endif /* !alpha && !__ia64__ && !defined(__mips__) */