
Copyright ©2023 Lexington Soft. All rights reserved.

CODE COVERAGE BEST
PRACTICES

Dinesh Dulipsingh,
dinesh@lexingtonsoft.com

Managing Director
Lexington Soft LLC
Boston, MA, USA

August 8, 2023

mailto:dinesh@lexingtonsoft.com

2

ABSTRACT

Code Coverage is a promising measure of test effectiveness. It identifies which portions of your
software are tested/un-tested. An increasing number of Software R&D organizations are interested in
cost-effective levels of coverage that provide sufficient fault removal with contained testing effort.
While there's no silver bullet in code coverage, the findings from various organizations reveal that
increasing code coverage decreases field related defects and increases a high level of confidence in
the quality of the code that is being deployed. This paper discusses how a leading Fortune 100
company made Unit Testing & Code Coverage Part of their Continuous Integration Flow by leveraging
an industry leading code coverage solution, Testwell CTC++ from Verifysoft GmbH. The study was
across 22 projects over a 20-week development cycle. This paper analyzes Adoption Rates, Defect
Ratio as a function of code coverage, Defects/KLOC (Kilobyte Lines of Code) and Return on Investment
(ROI) with Code Coverage. The paper discusses:

1. How software development teams can leverage the data from complex coverage levels (MC/DC)

to achieve effective code coverage and test effectiveness.
2. What are the best practices that are referenced or enforced to enable the engineering team

compliance to comply with coverage requirements?
3. Does high code coverage percentage equate to high quality in the test coverage?
4. How do you measure ROI with Code Coverage?

3

What are some of the ways that teams have uplifted and maintained

consistently high coverage across rapid development?

Figure 1. demonstrates the benefits of Testwell CTC++, Code Coverage during Software Development &

Continuous Integration (CI) across 22 projects resulting in a decrease in QA reported defects. The client is

one of the world’s leading consumer giants, successfully deploying CTC++ in one of the most challenging

build/development environments. The results indicate that increase in test coverage is correlated with the

decrease in QA & Field reported problems, supporting the use of code coverage measurement as a quality

control criterion.

Figure 1.

The green and orange legend represent Developer Defined Unit Testing & Developer Defined System

Testing respectively. The red legend represents the defects identified during Software QA. Initially for

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

100

200

300

400

500

600

700

800

900

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

C
o

d
e

C
o

ve
ra

ge
 %

D
ef

ec
t

C
o

u
n

t

Projects/Solutions

Shift Left | Code Coverage Benefits

Code Coverage % Code Review Dev.Def.UT Dev.Def.ST SQA.Def

As the Unit Test

increase the Code

Coverage, the

defects in following

SQA test get

reduced.

4

smaller projects P1 – P4, unit testing during development and system testing was little or none. Code

Coverage % was less than 5%. Gradually the Software Agile Practice Teams started to introduce and

incentivize development teams to write and perform unit testing and increase coverage thresholds. As the

unit testing and coverage threshold increased (Refer Projects P20 – P22) the defects identified during

Software QA were reduced significantly.

Figure 2. highlights the Defect Ratio as a function of Code Coverage. By introducing unit testing and

increasing code coverage during development the defect ratio reduced from 84% (P1) identified during

QA to 7% (P22) reinforcing the benefits of shifting left your testing.

Figure 2.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

20

40

60

80

100

120

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22

C
o

d
e

 C
o

v
e

ra
g

e
 %

D
e

f.
 R

a
ti

o

Projects/Solutions

Shift Left | Code Coverage Benefits

Code Coverage % Code Review Dev.Def.UT Dev.Def.ST SQA.Def

5

The study highlighted that code coverage was associated with fewer field failures and a lower probability

of field defects when adjusted for the number of pre-release changes.

The projects identified for this report are of varying degrees of complexity ranging from 10 KLOC to 70

KLOC. Figure 3 shows the correlation between Defects/KLOC captured Pre & Post Release. It is important

to observe the Defects/KLOC for Pre & Post Release identified on the Y-Axis and infer that an increase in

Defects/KLOC identified during Pre-Release inversely affects the Defects/KLOC identified in Post Release.

This strongly suggests that code coverage is a sensible and practical measure of test effectiveness.

Figure 3.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1

0

P
1

1

P
1

2

P
1

3

P
1

4

P
1

5

P
1

6

P
1

7

P
1

8

P
1

9

P
2

0

P
2

1

P
2

2

0

10

20

30

40

50

60

70

D
e

fe
ct

s/
Kl

o
c

Projects/Solutions

K
LO

C

Shift Left | Defects/KLOC by R&D

kloc Def/Kloc(PreRel) Def/Kloc(PostRel)

6

What are the best practices that are referenced or enforced to enable
the engineering team compliance to comply with coverage
requirements?

Best practices & enforcement of code coverage will vary across organizations; however, the commonality
identified is the culture shift within development/project teams that the engineering leadership needs to
overcome, as was the case with this client with over 1000+ developers across 175+ projects. It would fair
to state that code coverage alone does not reduce defects, our collective experience working with many
clients across different industry verticals has demonstrated that efforts in increasing code coverage WILL
lead to culture changes in engineering excellence that result in developers writing higher quality code to
begin with and in the long term reduces software defects.

Reaching the organization goals of Code Coverage thresholds will happen overtime. Bear in mind that the
test effort during development increases significantly to achieve a higher level of coverage. In this
scenario (Figure 4.) the client set a threshold level of 80% and tracked the progress over 20 weeks.

Figure 4.

The progress was gradual and the gap between Uncovered and Covered shortened over time. A best
practice adopted by the Agile Software Teams to enable the engineering team compliance to
coverage requirements was recognizing & rewarding developers.

2%
5% 7%

10%
14%

19%
24%

32%
37% 36%

48%

61%
65%

73%
77% 78% 79%

81% 82% 83%

98% 95% 93% 90% 86% 81% 76% 68% 63% 64% 52% 39% 35% 27% 23% 22% 21% 19% 18% 17%

0%

20%

40%

60%

80%

100%

120%

0

2

4

6

8

10

12

14

16

W! W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20

C
o

ve
ra

ge
 %

K
LO

C

Weeks

Project - Code Coverage Weekly Tracker| Goal 80%

Kloc.Covered Kloc.UnCovered % Code Covered % UnCovered Code

7

Does high code coverage percentage equate to high quality in the test
coverage?

Focusing on just a percentage can lead to a false sense of security. It is important to understand the role

of coverage levels to get a true measure of test effectiveness with code coverage. Testwell CTC++ support

all coverage levels (Function, Statement, Decision, Condition/Branch, Modified Condition/Decision

Coverage, Multiple Condition Coverage MCC & MC/DC)

Just functional or statement coverage can be classified as low-quality tests and can result in poor quality

code being pushed to production. This is in part due to missing tests which did not cover a specific path of

code. For more effective coverage and test effectiveness it is important to have a high coverage threshold

for the more complex coverage levels (Condition, MCC & MC/DC). Take for example the most complex

coverage level MC/DC, that checks if:

1. Each entry and exit point are invoked.

2. Each decision takes every possible outcome.

3. Each condition in a decision takes every possible outcome.

4. Each condition in a decision is shown to independently affect the outcome of the decision.

Testwell CTC++ shows a consolidated view (Figure 5) of all coverage levels achieved.

8

Figure 5.

This visual representation arms developers with accurate information on which portions of your code has

been executed/not executed and more specifically facilitates developers to write unit test cases so that

each condition should be evaluated at least once which affects the decision outcome independently.

MC/DC coverage is a requirement in many industries to ensure compliance with Safety Critical Standards

like ISO 26262 (Automotive) and DO-178C (Aerospace). Development teams that give priority for the

more complex coverage levels derive the intangible benefit of incorporating stronger testability into their

product design, which results in higher quality code and reducing defects downstream in the Software

Development Life Cycle (SDLC).

9

How do you measure ROI with Code Coverage?

ROI is a measure of tangible and intangible
costs. Tangible engineering costs can be
computed by the number of defects identified
during the SDLC. Defect Prevention Cost varies
based on

1) When in the SDLC the defect is
identified and fixed

2) Defect Severity
3) Average number of developers hours it

takes to develop a fix

Engineering costs for identifying & fixing
defects increase exponentially when defects
are found further right in the SDLC.

Figure 6.

The report compares project P1 vs. P2. In summary Project P2 identified more defects during Unit &
System Testing with a higher Defect/KLOC (Pre-Release) and a low Defect/KLOC (Post-Release). Refer
Figure 7.

1x
7x

15x

100x

0x

20x

40x

60x

80x

100x

120x

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

SQ
A

 T
es

ti
n

g

M
ai

n
te

n
an

ce

x.
co

st

www.isixsigma.com
Defect Prevention Cost

cost

10

Figure 7.

Effectively the total cost of poor quality (Figure 8.) = [Costs associated with identifying and fixing

defects during Unit & System Testing] – [Costs associated with identifying and fixing defects QA

Testing]. In this example the difference in the cost of poor quality between P1 & P2 was ~233x.

 Figure 8.

0

10

20

30

40

50

60

70

80

Code
Coverage %

Code
Review

Dev.Def.UT Dev.Def.ST SQA.Def Tot.Def kloc Def/Kloc(Pr
eRel)

Def/Kloc(P
ostRel)

P1 20 8 0 10 31 49 6 2.94 5.23

P2 78 7 29 9 4 49 6 7.51 0.65

Project P1 vs P2

P1

P2

115x

293x

470x

59x

585x

352x

0x

100x

200x

300x

400x

500x

600x

700x

P1 P2

Cost Comparison P1 vs. P2

Implementation COQ(CR+UT+ST)

SQA Testing COQ (SQA)

Total.Cost Of Poor Quality

11

SUMMARY

This paper discusses how Testwell CTC++ was leveraged to make Unit Testing & Code Coverage part of

the Continuous Integration flow. Key findings from this study revealed:

▪ An increase in unit testing and coverage threshold levels resulted in a decrease in defects
identified during Software QA.

▪ An increase in Defects/KLOC identified during Pre-Release inversely affects the Defects/KLOC
identified in Post Release

▪ A culture shift with development teams is required to bridge the gap between uncovered and
covered code.

▪ Complex coverage levels (MC/DC) can be leveraged to develop unit test cases to achieve effective
code coverage and test effectiveness.

▪ Leveraging code coverage during unit and system testing results in a high ROI.

We hope that the data and experiences described in this paper motivate software development teams to

make code coverage an integral part of their development workflow. We value your feedback, please

email us at info@lexingtonsoft.com.

REQUEST FREE EVALUATION

mailto:info@lexingtonsoft.com
https://www.lexingtonsoft.com/devops-tools-free-trial/

